Abstract
In this paper several neural network classification algorithms have been applied to a real-world data case of electron microscopy data classification. Using several labeled sets as a reference, the parameters and architecture of the classifiers, LVQ (Learning Vector Quantization) trained codebooks and BP (backpropagation) trained feedforward neural-nets were optimized using a genetic algorithm. The automatic process of training and optimization is implemented using a new version of the g-lvq (genetic learning vector quantization) and G-Prop (genetic back-propagation) algorithms, and compared to a non-optimized version of the algorithms, Kohonen's LVQ and MLP trained with QuickProp. Dividing the all available samples in three sets, for training, testing and validation, the results presented here show a low average error for unknown samples. In this problem, G-Prop outperforms G-LVQ, but G-LVQ obtains codebooks with less parameters than the perceptrons obtained by G-Prop. The implication of this kind of automatic classification algorithms in the determination of three dimensional structure of biological particles is finally discused.
Preview
Unable to display preview. Download preview PDF.
References
M. C. San Martín, N.P.J. Stamford, N. Dammeranova, N.E. Dixon, and J.M. Carazo. A structural model for the Echerichia coli DnaB helicase based on electron microscopy data. J. Struct. Biol., (114):167–176, 1995.
X. Yu, M.J. Jezewska, W. Bujalowski, and E.H. Egelman. The hexameric e.coli dnab helicase can exist in different quaternary states. J. Mol. Biol., (259):7–14, 1996.
M. Bárcena, M.C. San Martín, F. Weise, S. Ayora, J.C. Alonso, and J.M. Carazo. Polymorphic quaternary organization of the bacilus subtilis bacteriophage SPP1 replicative helicase (G40P). J. Mol. Biol., (283):809–819, 1998.
C. San Martin, C. Gruss, and J.M. Carazo. Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. Journal of Molecular biology, (269), 1997.
Teuvo Kohonen. The self-organizing map. Proc. IEEE 78:1464–1480, 1990.
R. Marabini, and J.M. Carazo. Pattern recognition and classification of images of biological macromolecules using artificial neural networks. Biophysics Journal, 66:1804–1814, 1994.
R.A. Crowther, and L.A. Amos. Harmonic analysis of electron microscope images with rotational symmetry. J. Mol. Biol., (60):123–130, 1971.
Jose-Jesus Fernández and Jose-Maria Carazo. Analysis of structural variability within two-dimensional biological crystals by a combination of patch averaging techniques and self-organizing maps. Ultramicroscopy, 65:81–93, 1996.
J. J. Merelo and A. Prieto. G-LVQ, a combination of genetic algorithms and LVQ. In N.C.Steele D.W.Pearson and R.F. Albrecht, editors, Artificial Neural Nets and Genetic Algorithms, pages 92–95. Springer-Verlag, 1995.
T. Kohonen. The self-organizing map. Procs. IEEE, 78:1464 ff., 1990.
Ethem Alpaydim. GAL: Networks that grow when they learn and shrink when they forget. Technical Report TR-91-032, International Computer Science Institute, May 1991.
Enrique Monte, D. Hidalgo, J. Mariño, and I. Hernáez. A vector quantization algorithm based on genetic algorithms and LVQ. In NATO-ASI Bubión, page 231 ff., 1993.
S.R. Johnson, J.M. Sutter, H.L. Engelhardt, P.C. Jurs, J. Whiteand J.S. Kauer, T.A. Dickinson, and D.R. Walt. Identification of multiple analytes using an optical sensor array and pattern recognition neural networks. Anal. Chem., (69):4641, 1997.
P. Fränti, J. Kivijärvi, T. Kaukoranta, and O. Nevalainen. Genetic algorithms for codebook generation in vq. In Proc. 3rd Nordic Workshop on Genetic Algorithms, Helsinki, Finlan, pages 207–222, 1997.
Juan-Carlos Perez and Enrique Vidal. Constructive design of LVQ and DSM classifiers. In J. Mira, J. Cabestany, and A. Prieto, editors, New Trends in Neural Computation, Lecture Notes in Computer Science No. 686, pages 335–339. Springer, 1993.
Xin Yao and Yong Liu. Towards Designing Artificial Neural Networks by Evolution. Applied Mathematics and Computation, 91(1):83–90, 1998.
P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-rop: Global Optimization of Multilayer Perceptrons using GAs. submitted to Neurocomputing, 1998.
P.A. Castillo; J. González; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. SA-Prop: Optimization of Multilayer Perceptron Parameters using Simulated Annealing. submitted to IWANN99, 1998.
J. J. Merelo; A. Prieto; F. Morán; R. Marabini; J. M. Carazo. Automatic classification of biological particles from electron-microscopy images using conventional and genetic-algorithm optimized learning vector quantization. Neural Processing Letters, 8:55–65, 1998.
A. Pascual, M. Brcena, and J.M. Carazo. Application of the fuzzy kohonen clustering network to biological macromolecules images classification. In submitted to IWANN99, 1999.
David H. Ackley. A connectionist algorithm for genetic search. In John. J Grefenstette, editor, Proceedings of the First International Conference on Genetic Algorithms and their Applications, pages 121–135, Hillsdale, New Jersey, 1985. Lawrence Erlbaum Associates.
I. Harvey. Species adaptation genetic algorithms: a basis for a continuing SAGA. In F. J. Varela and P. Bourgine, editors, Proceedings of the First European Conference on Artificial Life. Toward a Practice of Autonomous Systems, pages 346–354, Paris, France, 11–13 December 1991. MIT Press, Cambridge, MA.
J. D. Schaffer and J. J. Grefenstette. Multi-objective learning via genetic algorithms. In Procs. of the 9th international Conference on Artificial Intelligence, pages 593–595, 1985.
S.E. Fahlman. Faster-Learning Variations on Back-Propagation: An Empirical Study. Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Merelo, J.J., Rivas, V., Romero, G., Castillo, P., Pascual, A., Carazo, J.M. (1999). Improved automatic classification of biological particles from electron-microscopy images using genetic neural nets. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100504
Download citation
DOI: https://doi.org/10.1007/BFb0100504
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66068-2
Online ISBN: 978-3-540-48772-2
eBook Packages: Springer Book Archive