Abstract
Starting from a recall of the theoretical framework, this paper presents the conditions and the strategy of implementation of CCA, a recent algorithm for non-linear mapping. Initially developed in a basic form, for non-linear and high-dimensional data sets, the algorithm is here adapted to the general, and more realistic, case of noisy data. This algorithm, which finds the manifold (in particular, the intrinsic dimension) of the data, has proved to be very efficient in the representation of highly folded data structures. We describe here how it can be tuned to find the average manifold and how robust the convergence is. A companion paper (this issue) presents various applications using this property.
Preview
Unable to display preview. Download preview PDF.
References
Borg I. and Groenen P. (1997). Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics.
Cirrincione G., Cirrincione M., Vitale G. (1994). “Diagnosis of Three-Phase converters Using the VQP Neural Network” 2nd IFAC Workshop on Computer Software Structures integrating AI/KBS System in Process Control, Lund, Sweden, 11/13 August 1994, 5 pages.
D'Aubigny G., L'analyse Multidimensionnelle des Données de Dissimilarités, Thèse d'état, Université Grenoble I, 1989.
Demartines P. (1992). Mesures d'organisation du réseau de Kohonen. In M. Cottrell, editor, Congrès Satellite du Congrès Européen de Mathématiques: Aspects Théoriques des Réseaux de Neurones.
Demartines P. (1994). Analyse de données par réseaux de neurones auto-organisés. PhD thesis, Institut National Polytechnique de Grenoble.
Demartines P. and Herault J. (1997). Curvilinear Component Analysis: a Self-Organising Neural Network for Non-Linear Mapping of Data Sets, IEEE Trans. on Neural Networks, 8, 1, 148–154.
Gersho, A. and Gray, R. M. (1992). Vector quantization and signal compression. Kluwer Academic Publishers. London.
Guérin-Dugué A., Teissier P., Delso-Gafaro G. and Hérault J. (1999). Curvilinear Component Analysis for High-dimensional Data Representation: II. Examples of introducing additional mapping constraints for specific applications. Proceedings of IWANN'99, Alicante, Spain.
Hérault J., Oliva A., Guérin-Dugué A. (1997). Scene Categorisation by Curvilinear Component Analysis of Low Frequency Spectra. European Symposium on Artificial Neural Networks, Bruges, BE.
Kohonen, T. (1989). Self-Organisation and Associative Memory. Springer-Verlag, Berlin, 3rd edition.
Kruskal J.B. (1964). Non-metric multidimensional scaling: a numerical method. Psychometrika, 29:115–129.
Mardia K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press, London.
Sammon, J.W. (1969). A non-linear mapping algorithm for data structure analysis. IEEE Trans. Computers, C-18(5):401–409.
Shepard R.N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrica, vol. 27, pp. 125–139.
Siedlecki, W., Siedlecka K., and Sklansky J. (1988). An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition, 21(5):411–429.
Teissier P., Guérin-Dugué A., Schwartz J.L. (1998). Models for Audiovisual Fusion in a Noisy-Vowel Recognition Task, Journal of VLSI Signal Processing, vol. 20, pp. 25–44.
Vigneron V., Maiorov V., Berndt R. Sanz-Ortega J. J. and Schillebeeckx P. (1997). Neural network application to enrichment measurements with nai detectors. VCCSR Proceedings, Vienna, November 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hérault, J., Jausions-Picaud, C., Guérin-Dugué, A. (1999). Curvilinear component analysis for high-dimensional data representation: I. Theoretical aspects and practical use in the presence of noise . In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100530
Download citation
DOI: https://doi.org/10.1007/BFb0100530
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66068-2
Online ISBN: 978-3-540-48772-2
eBook Packages: Springer Book Archive