Skip to main content

Curvilinear component analysis for high-dimensional data representation: I. Theoretical aspects and practical use in the presence of noise

  • Engeneering Applications
  • Conference paper
  • First Online:
Engineering Applications of Bio-Inspired Artificial Neural Networks (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1607))

Included in the following conference series:

  • 246 Accesses

Abstract

Starting from a recall of the theoretical framework, this paper presents the conditions and the strategy of implementation of CCA, a recent algorithm for non-linear mapping. Initially developed in a basic form, for non-linear and high-dimensional data sets, the algorithm is here adapted to the general, and more realistic, case of noisy data. This algorithm, which finds the manifold (in particular, the intrinsic dimension) of the data, has proved to be very efficient in the representation of highly folded data structures. We describe here how it can be tuned to find the average manifold and how robust the convergence is. A companion paper (this issue) presents various applications using this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borg I. and Groenen P. (1997). Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics.

    Google Scholar 

  • Cirrincione G., Cirrincione M., Vitale G. (1994). “Diagnosis of Three-Phase converters Using the VQP Neural Network” 2nd IFAC Workshop on Computer Software Structures integrating AI/KBS System in Process Control, Lund, Sweden, 11/13 August 1994, 5 pages.

    Google Scholar 

  • D'Aubigny G., L'analyse Multidimensionnelle des Données de Dissimilarités, Thèse d'état, Université Grenoble I, 1989.

    Google Scholar 

  • Demartines P. (1992). Mesures d'organisation du réseau de Kohonen. In M. Cottrell, editor, Congrès Satellite du Congrès Européen de Mathématiques: Aspects Théoriques des Réseaux de Neurones.

    Google Scholar 

  • Demartines P. (1994). Analyse de données par réseaux de neurones auto-organisés. PhD thesis, Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Demartines P. and Herault J. (1997). Curvilinear Component Analysis: a Self-Organising Neural Network for Non-Linear Mapping of Data Sets, IEEE Trans. on Neural Networks, 8, 1, 148–154.

    Article  Google Scholar 

  • Gersho, A. and Gray, R. M. (1992). Vector quantization and signal compression. Kluwer Academic Publishers. London.

    MATH  Google Scholar 

  • Guérin-Dugué A., Teissier P., Delso-Gafaro G. and Hérault J. (1999). Curvilinear Component Analysis for High-dimensional Data Representation: II. Examples of introducing additional mapping constraints for specific applications. Proceedings of IWANN'99, Alicante, Spain.

    Google Scholar 

  • Hérault J., Oliva A., Guérin-Dugué A. (1997). Scene Categorisation by Curvilinear Component Analysis of Low Frequency Spectra. European Symposium on Artificial Neural Networks, Bruges, BE.

    Google Scholar 

  • Kohonen, T. (1989). Self-Organisation and Associative Memory. Springer-Verlag, Berlin, 3rd edition.

    Google Scholar 

  • Kruskal J.B. (1964). Non-metric multidimensional scaling: a numerical method. Psychometrika, 29:115–129.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia K.V., Kent, J.T. and Bibby, J.M. (1979). Multivariate Analysis. Academic Press, London.

    MATH  Google Scholar 

  • Sammon, J.W. (1969). A non-linear mapping algorithm for data structure analysis. IEEE Trans. Computers, C-18(5):401–409.

    Google Scholar 

  • Shepard R.N. (1962). The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrica, vol. 27, pp. 125–139.

    Article  MathSciNet  Google Scholar 

  • Siedlecki, W., Siedlecka K., and Sklansky J. (1988). An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition, 21(5):411–429.

    Article  MATH  MathSciNet  Google Scholar 

  • Teissier P., Guérin-Dugué A., Schwartz J.L. (1998). Models for Audiovisual Fusion in a Noisy-Vowel Recognition Task, Journal of VLSI Signal Processing, vol. 20, pp. 25–44.

    Article  Google Scholar 

  • Vigneron V., Maiorov V., Berndt R. Sanz-Ortega J. J. and Schillebeeckx P. (1997). Neural network application to enrichment measurements with nai detectors. VCCSR Proceedings, Vienna, November 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hérault, J., Jausions-Picaud, C., Guérin-Dugué, A. (1999). Curvilinear component analysis for high-dimensional data representation: I. Theoretical aspects and practical use in the presence of noise . In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100530

Download citation

  • DOI: https://doi.org/10.1007/BFb0100530

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66068-2

  • Online ISBN: 978-3-540-48772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics