Abstract
Using a recent algorithm for non linear mapping, Curvilinear Component Analysis, we show through three applications how a priori knowledge can be introduced in the CCA framework, and we translate this knowledge in term of mapping constraints. This a priori knowledge can be introduced to constraint the convergence of the algorithm toward a data structure having a best interpretation according to the physical process of input data generation. The three applications concern geographical data representation, speech recognition and IRMf image processing.
Preview
Unable to display preview. Download preview PDF.
References
d'Aubigny G., L'analyse Multidimensionnelle des Données de Dissimilarités, Thèse d'état, Université Grenoble I, 1989.
Borg I., Groenen P., Modern Multidimensional Scaling: Theory and Applications, Springer Series in Statistics, 1997
Cox, T.F., Cox, M.A.A., Multidimensional Scaling on the Sphere. Communications in Statistics, 20, pp. 2943–2953, 1991.
Demartines P. and Hérault J., Curvilinear Component Analysis: a Self-Organising Neural Network for Non-Linear Mapping of Data Sets, IEEE Trans. on Neural Networks, vol 8, no1, pp. 148–154, 1997.
Drösler J., The empirical validity of multidimensional scaling in Borg I. (Ed.), Multidimensional data representation: when and why, pp. 627–651, Ann. Arbor, MI: Mathesis Press, 1981.
Drury H.A., Van Essen D.C. et al., Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System, Journal of Neuroscience, vol 8, no 1, pp. 1–28, 1996
Ekman G., Dimensions of color vision, Journal of Psychology, vol 38, pp. 476–474, 1954
Hérault J., Jausions-Picaud C., Guérin-Dugué A., Curvilinear Component Analysis for high dimensional data representation: I. Theoretical aspects and practical use in the presence of noise, submitted to IWANN'99, june 2–4, Alicante, Spain, 1999.
Sammon J.W., A nonlinear mapping algorithm for data structure analysis, IEEE Trans. Computers, vol C-18, no5, pp. 401–409, 1969
Rogowitz B.E., Frese T., Smith J.R., at al., Perceptual Image Similarity Experiments, in Human Vision and Electronic imaging, B.E. Rogowitz and T.N. Pappas (Ed.), Proceedings of the SPIE, no 3299, San Jose, USA CA, january 26–29, 1998
Teissier P., Guérin-Dugué A., Schwartz J.L., Models for Audiovisual Fusion in a Noisy-Vowel Recognition Task, Journal of VLSI Signal Processing, vol 20, pp. 25–44, 1998.
Teo P.C., Sapiro G., Wandell B.A., Creating Connected Representations of Cortical Gray Matter for Functional MRI Visualisation, IEEE Trans. on Med. Imaging, vol 16, no6, pp. 852–863, 1997
Tootel R., Dale A., Sereno M., Malach R., New images from human visual cortex, Trends in Neurosciences, vol. 19, no 11, pp. 481–489, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guérin-Dugué, A., Teissier, P., Gafaro, G.D., Hérault, J. (1999). Curvilinear Component Analysis for high-dimensional data representation: II. Examples of additional mapping constraints in specific applications . In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100531
Download citation
DOI: https://doi.org/10.1007/BFb0100531
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66068-2
Online ISBN: 978-3-540-48772-2
eBook Packages: Springer Book Archive