Abstract
Lattice-Boltzmann simulations are often used for studying steady-state hydrodynamics. In these simulations, however, the complete time evolution starting from some initial condition is redundantly computed due to the transient nature of the scheme. In this article we present a refinement of body-force driven lattice-Boltzmann simulations that may reduce the simulation time significantly. This new technique is based on an iterative adjustment of the local body-force and is validated on a realistic test case, namely fluid flow in a static mixer reactor.
Preview
Unable to display preview. Download preview PDF.
References
R. Benzi, S. Succi and M. Vergassola, The lattice-Boltzmann equation-theory and applications, Phys. Rep., 3, 145 (1992).
S. Chen, Z. Wang, X. Shan and G. Doolen, Lattice-Boltzmann computational fluid dynamics in three dimensions, J. of Stat. Phys., 68, 379 (1992).
D. H. Rothman and S. Zaleski, Lattice gas cellular automata, Cambridge University Press, (1997).
S. Chen and G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329 (1998).
D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen and P.M.A. Sloot, Lattice-Boltzmann hydrodynamics on parallel systems, Comp. Phys. Commun., 111, 14 (1998).
A. Koponen, D. Kandhai, E. Hellén, M. Alava, A. Hoekstra, M. Kataja, K. Niskanen, P. Sloot and J. Timonen, Permeability of three-dimensional random fiber webs, Phys. Rev. Lett., 80, 716 (1998).
D.S. Clague, B.D. Kandhai, R. Zhang and P.M.A. Sloot, On the hydraulic permeability of (un)bounded fibrous media using the Lattice-Boltzmann method, Submitted.
J.A. Kaandorp, C. Lowe, D. Frenkel and P.M.A. Sloot, Effect of nutrient diffusion and flow on coral morphology, Phys. Rev. Lett., 77, 2328 (1996).
D. Kandhai, D. Vidal, A. Hoekstra, H. Hoefsloot, P. Iedema and P.M.A. Sloot, Lattice-Boltzmann and finite element simulations of fluid flow in a SMRX mixer, Int. J. Num. Meth. Fluids, accepted for publication.
G. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate latticegas automata, Phys. Rev. Lett., 61, 2332 (1988).
F.J. Higuera and J. Jemenez, Boltzmann approach to lattice gas simulations, Europhys. Lett. 7, 663 (1989).
F.J. Higuera, S. Succi and R. Benzi, Lattice gas-dynamics with enhanced collisions, Europhys. Lett., 9, 345 (1989).
Y.H. Qian, D. d'Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479 (1992).
A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. theoretical foundation, J. Fluid Mech. 271, 285 (1994); A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. numerical results, J. Fluid Mech. 271, 311 (1994).
E.S. Mickaily-Huber, F. Bertrand, P. Tanguy, T. Meyer, Albert Renken, Franz S. Rys and Marc Wehrli, Numerical simulations of mixing in an SMRX static mixer, The Chem. Engl. J., 63, 117–126 (1996).
S. Chen, D. Martinez and R. Mei, On boundary conditions in lattice Boltzmann methods, Phys. Fluids, 8, 2527 (1996).
D. Kandhai, A. Koponen, A Hoekstra, M. Kataja, J. Timonen and P.M.A. Sloot, Implementation Aspects of 3D lattice-BGK: Boundaries, Accuracy and a Fast Relaxation Method, Submitted.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag
About this paper
Cite this paper
Kandhai, D., Koponen, A., Hoekstra, A., Sloot, P.M.A. (1999). Iterative momentum relaxation for fast lattice-boltzmann simulations. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100592
Download citation
DOI: https://doi.org/10.1007/BFb0100592
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65821-4
Online ISBN: 978-3-540-48933-7
eBook Packages: Springer Book Archive