Skip to main content

Virtual engineering of multi-disciplinary applications and the significance of seamless accessibility of geometry data

  • Track C3: Computational Science
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1999)

Abstract

The concept of virtual engineering (VEng) can be understood as a generalization of “multi-disciplinary problem solving”, an ever more used term in scientific computing. An abstract space consisting of the physical, the geometrical, and the cost function directions, called CGP, is introduced. The VEng problem can be seen as a complex manifold embedded in this space. Common standard data formats, unified data access, as well as open, non monolithic systems, are discussed. These contribute to smoothing the sharp edges and closing the gaps of the manifold. The significance of seamless accessibility of data is illustrated by means of the tightly coupled fluid-structure interaction in aero-elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACIS-3D Toolkit User Guide, Spatial Technology, Inc., Version 4.0, 1998.

    Google Scholar 

  2. G. Barequet: Using Geometric Hashing to Repair CAD Objects IEEE Computational Science & Engineering, 4(4), pp. 22–41, October–December 1997.

    Article  MathSciNet  Google Scholar 

  3. John T. Batina; Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex Aircraft Aeroelastic Analysis: AIAA-89-1189-CP, 1989.

    Google Scholar 

  4. E. Bonomi et al., Astrid: A Programming Environment for Scientific Applications on Parallel Vector Computers, Plenum Press, New York, 1990.

    Google Scholar 

  5. G. Butlin, C. Stops; CAD data repair, Proceedings 5th International Meshing Roundtable, Sandia National Laboratories, pp. 7–12, October 1996.

    Google Scholar 

  6. O. Hassan, N.P. Weatherill, J. Peraire, K. Morgan and E.J. Probert; Generation and adaptation of unstructured meshes, COSMASE Course on Grid Generation, CERFACS, February, 1995.

    Google Scholar 

  7. V. Deshpande, E. A. Gerteisen, N. Hilbrink, S. Merazzi, A. Mezentsev; Sixth Sense (6S)—An integrated Problem Solving Environment, To appear in Proceedings of Swiss CAD/CAM Conference, 1999.

    Google Scholar 

  8. Spline Geometry Subprogram Library, Theory Document, Version 3.5, Boeing Information & Support Services, with contributions of D.R. Ferguson, Th. A. Grandine, F. W. Klein, R. Ames, Sept. 1997.

    Google Scholar 

  9. Computational Fluid Dynamics '98—Session on CFD in Fluid/Structure Interaction; Fourth European Fluid Dynamics Conference held in September 1998, John Wiley & Sons, Ltd., 1998.

    Google Scholar 

  10. Computational Fluid Dynamics'98—Session on Impact of Evolutionary Computing in Flow Engineering, Special Technology Session on Real World CFD Optimization Problem, Special Technology Sessions on Industrial Design using Parallel CFD; Fourth European Fluid Dynamics Conference held in September 1998, John Wiley & Sons, Ltd., 1998.

    Google Scholar 

  11. W. Egli, U. Kogelschatz, E.A. Gerteisen and R. Gruber, 3D Computation of Corona, Ion Induced Secondary Flows and Particle Motion in Technical ESP Configurations, J. of Electrostatics 40&41, pp. 425–430, 1997.

    Article  Google Scholar 

  12. L. Fornasier, E. A. Gerteisen, S. Merazzi; Multi-Disciplinary Applications using the MemCom Data Management System, To appear in Proceedings of Swiss CAD/CAM Conference, 1999.

    Google Scholar 

  13. R. Gruber, W. Egli, E. Gerteisen, G. Jost, S. Merazzi; Problem-Solving Environments: Towards an Environment for Engineering Applications, SPEEDUP Journal 9, 1995.

    Google Scholar 

  14. P.L. George; Automatic mesh generation. Application to Finite Element Methods. Wiley, 1991.

    Google Scholar 

  15. E. Gerteisen, R. Gruber and S. Merazzi; Domain Decomposition: Theory and Practice, Computers in Physics, 11(1), Jan/Feb 1997.

    Google Scholar 

  16. E.A. Gerteisen and Ralf Gruber; Computational Environment based on Domain Decomposition Approach, Proc. of 9th Int. Conf. on Domain Decomposition, John Wiley & Sons Ltd., 1996.

    Google Scholar 

  17. E. A. Gerteisen, N. Hilbrink, A. A. Mezentsev, Th. Woehler; CAD Repair for Discrete Simulation Methods, To appear in Proceedings of Swiss CAD/CAM Conference, 1999.

    Google Scholar 

  18. ICEM CFD/CAE, Installation Guide, ICEM CFD Engineering, CA, USA, 1996.

    Google Scholar 

  19. JULIUS (Joint Industrial Interface for End-User Simulations) Project, ESPRIT 25050, Technical Work Programme, Parts 1 & 2, October 1997 [see also www.6S.org].

    Google Scholar 

  20. Krause, F.-L., Stiel, Ch. Lüddemann, J.; Processing of Data Conversion, Verification and Repair, Proc. of Fourth Symp. on Solid Modelling and Applications, 248–254, 1997.

    Google Scholar 

  21. R. Löhner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone C. Charman; Computational Fluid Dynamics Review 1995, John Wiley & Sons, 1995 (ISBN 0-471-95589-2).

    Google Scholar 

  22. L. Piegl and W. Tiller; The NURBS book, 2nd Edition, Springer Verlag, 1997 (ISBN 3-540-61545-8).

    Google Scholar 

  23. John Murphy, David Rowse, Luciano Fornasier, Philippe Thomas, Argiris Kamoulakos and Edgar A. Gerteisen; JULIUS Project—ESPRIT 25050 Joint Industrial Interface for End—User Simulations; CossCuts—the newsletter of CSCS/SCSC, Vol. 7, No. 2, October 1998.

    Google Scholar 

  24. R. Orfali, D. Harkey, J. Edwards; Instant CORBA, John Wiley & Sons, 1997 (ISBN 0-471-18333-4)

    Google Scholar 

  25. Diane Poirier, Steven R. Allmaras, Douglas R. McCarthy, Matthew F. Smith, Fancis Y. Enomoto; The CGNS System, AIAA-98-3007, 1998.

    Google Scholar 

  26. Pierre Perrier, New data-base concepts for CFD validation; ECCOMAS 1998, J. Wiley& Sons, 1998.

    Google Scholar 

  27. S. G. Parker, C. R. Johnson, and D. Beazley; Computational Steering Software Systems and Strategies, IEEE Computational Science & Engineering, 4(4), pp. 50–59, October–December 1997.

    Article  Google Scholar 

  28. J. R. Rice, R. F. Boisvert; From Scientific Software Libraries to Problem-Solving Environments, IEEE Computational Science & Engineering, 3(3), pp. 44–53, 1996.

    Article  Google Scholar 

  29. D. Spicer, J. Cook, C. Poloni, P. Sen; EP20082 Frontier: Industrial multiobjective design optimization, Fourth European Fluid Dynamics Conference, pp. 546–551, John Wiley & Sons, 1998.

    Google Scholar 

  30. S. Merazzi; The MemCom User manual, B2000 Data Access and Data Description Manual, SMR Corporation, Bienne, Switzerland, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Alfons Hoekstra Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Deshpande, V. et al. (1999). Virtual engineering of multi-disciplinary applications and the significance of seamless accessibility of geometry data. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100631

Download citation

  • DOI: https://doi.org/10.1007/BFb0100631

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65821-4

  • Online ISBN: 978-3-540-48933-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics