
Implementation Issues about the Embedding of

Existing High Level Synthesis Algorithms in

HOL �

Dirk Eisenbiegler�� Christian Blumenr�ohr� and Ramayya Kumar�

� Institute for Circuit Design and Fault Tolerance �Prof� Dr��Ing� D� Schmid��
University of Karlsruhe� Germany

� Forschungszentrum Informatik �Prof� Dr��Ing� D� Schmid�� Karlsruhe� Germany
e�mail� eisen	ira�uka�de� blumen	ira�uka�de� kumar	fzi�de

Abstract� This article describes the embedding of high level synthesis
algorithms in HOL� For given standard synthesis steps� we describe� how
its data can be mapped to terms in HOL and the synthesis process be ex�
pressed by means of a logical derivation� In contrast to post�synthesis ver�
i
cation techniques our approach is constructive in a sense that the proof
is derived during synthesis rather than �guessed� afterwards� Therefore
one does not get into the hardship of NP�completeness or undecidability�
Our approach ensures correctness based on the HOL system and is also
performed fully automatically�

� Introduction

During the hardware design process of digital circuits� more and more complex
tools are involved� Due to their complexity� guaranteeing the correctness of syn�
thesis software is crucial� Bugs in the software may lead to incorrect hardware
implementations�
One approach towards proving the correctness of implementations is by post�

synthesis veri�cation� An excellent overview of veri�cation techniques is given in
�Gupt�	� Melh�
�� However� full automation is only achievable for comparatively
small sized circuits at lower levels of abstraction� For large sized circuits� veri��
cation algorithms either run into space�time hurdles or the user has to interact
and perform some proofs by hand�
Formal synthesis is another approach towards hardware correctness� We con�

sider formal synthesis as a derivation of the implementation from the speci�ca�
tion by logical re�nements�
We are developing a formal synthesis toolbox called HASH
Higher order

logic Applied to Synthesis of Hardware� which exploits standard synthesis algo�
rithms and is applicable to di�erent abstraction levels� It is based on the HOL
system� i�e� hardware is represented by means of HOL terms� and only rule appli�
cations are used to transform hardware descriptions� As opposed to conventional

� This work has been partly
nanced by the Deutsche Forschungsgemeinschaft� Project
SCHM
���
���

synthesis tools� where there is no restriction on how to compute the implemen�
tation� our approach can only produce correct hardware implementations� The
reliability of our synthesis conversions only depends on the correctness of the
implementation of the HOL core and is independent from the complexity of the
conversions� In this article� we will present the high level synthesis component
of HASH�
Other approaches in the area of formal synthesis are �Lars��� AHL�	� HaLD���

John��� JoSh���� All these above�mentioned techniques have one common draw�
back� namely they do not exploit the knowledge of the algorithms which abound
in synthesis� Additionally� the interactions to be performed during synthesis are
at the schematic level or from a logician�s point of view� The novelty of our cur�
rent approach is that no new synthesis algorithms
either formal or informal� are
proposed� but a general scheme for logically embedding various existing synthesis
algorithms within a formal set�up is presented�
The outline of this paper is as follows� We will �rst describe the high level

synthesis procedure in an informal manner
section 	�� Then the logical repre�
sentations and the logical transformations corresponding to the synthesis process
are introduced in sections
� � and �� Afterwards� we will present some experi�
mental results
section �� and �nally discuss the embedding of existing high level
synthesis techniques
section ���

� Our High Level Synthesis Process

The starting point of our approach is a so called basic block� Basic blocks are
data �ow graphs describing the input�output relation by a composition of atomic
operations� The timing of the atomic operations is static in a sense that they
can be executed in �xed time
see �gure ��� The functional relation represents
a pure algorithmic description without any timing information�
The result of high level synthesis is a structure at the RT�level� Our syn�

thesis process consists of the following steps� scheduling� register allocation and
binding� allocation and binding of functional units� Interface synthesis will not
be considered in this paper�
Our implementation� does not yet allow pipelining� instead all hardware

resources
functional units as well as registers� will be reused during di�erent
clock ticks of one evaluation period�
Also the synthesis approach currently does not support any control �ow� For

more details on high level synthesis see �GDWL��� CaWo����

Scheduling

Scheduling determines the number of control steps k needed for the evaluation of
the algorithm and assigns each operation to one particular control step �� �� � � � � k

� Currently� no chaining of functional units and no multi�cycle operation units are
used�

I

a

b

c

g

�

p

�
s

�
q

� r

� t
�

�

x

y

scheduling

II

a

b

c

g� g� g� g�

�

p

�
s

�
q

� r

� t
�

�

x

y

register
allocation
� binding

III

a

b

c

g� g� g� g�

�

p

�
s

�
q

� r

� t
�

�

x

y

�

�

�

�

�

�

�

z� �

�

�

z�
�

z� �function unit
allocation
� binding

IV
FU FUFU

a

c
b

FU y

0 0

x

0 1

Fig� �� High Level Synthesis Process

see �gure ��� There are mainly two costs� that have to be considered� the number
of control steps k and the hardware resources required for implementing the
operations� During scheduling� a trade o� between the number of control steps
k
speed of the implementation� and the hardware requirements
size of the
implementation� has to be found�
Mainly there are two kinds of scheduling algorithms� ones with pregiven

hardware constraints for the operation units and others with pregiven timing
constraints� However� the implementation at the RT�level not only consists of
operation units but also of communication units� The cost for these units can
only be roughly estimated during the scheduling process� There are also advanced
synthesis algorithms with their cost functions covering timing aspects as well
as di�erent hardware constraints� Such algorithms can be used to also handle
sophisticated synthesis tasks� A schedule algorithm that is suitable for control
�ow paths is e�g� path�based scheduling �Camp���� whereas �PaKn��� introduces
a possible schedule technique named force�directed only applicable to data �ow
graphs�

Register Allocation and Binding

The register allocation determines the number of registers needed for storing
intermediate results between two control steps� The register binding determines
a mapping between registers and auxiliary variables
intermediate results� for
every control step�
In case there is only one single data type for all auxiliary variables� register

allocation becomes trivial� The number of registers needed equals the maximum
number of auxiliary variables between two control steps� In general� there may be
auxiliary variables with di�erent types� Di�erent sizes of registers will be needed
to store them� This makes register allocation more complex�
Register allocation and binding have an impact on the size needed for the

communication parts between function units and registers� Good register bind�
ings and allocations avoid additional hardware�

Function Unit Allocation and Binding

In this step� we construct a compound functional unit FU providing the operators
for implementing the operations of each control step
allocation�� and we use
the compound functional unit FU to implement the operations of the data �ow
graph
binding�� The function units are assumed to be given in a library� The
library describes the mapping between its components and the operation
s� they
can perform� There may be function units that are implementations of single
operations as well as multi�purpose units with control input signals for selecting
di�erent operations� In our example� the function units consists of a multiplier
implementing the ��operation and a multi�purpose unit implementing the � and
� operation� where the operation is selected by a control signal having one of
the values � and �� respectively� Besides the functional aspects� the library also
contains cost information such as area and power consumption�

� Formal Representation of Data Flow Graphs

The e�ciency of software strongly depends on the underlying data structures�
In synthesis tools� suitable hardware representations have to be found� This also
holds for our formal synthesis approach� where hardware is represented by means
of HOL terms� In our approach� data �ow graphs are represented as follows�

�
x�� � � � � xm��
let houtvars�i � op�hinvars�i in

let houtvars�i � op�hinvars�i in

���
let houtvarsli � oplhinvarsli in

y�� � � � � yn�

The above structure describes its input�output function in terms of its basic
operations� x�� x�� � � � � xm are the inputs� y�� y�� � � � � yn the outputs and op��
op�� � � ��opl the operations of the data �ow graph� let�terms are only used for a
better readability of ��redices� Each let�term describes the connectivity of one
operation� For all i� hinvarsii and houtvarsii denote the inputs and outputs of
operation opi� respectively� The inputs and outputs of operations are tuples�
with each operation having a speci�c arity of its input and output tuple�
Since these terms represent pure data �ow graphs� i�e� no cycles are present�

a partial ordering on the set of nodes is induced� This partial order corresponds
to the fact� that some operation A must be executed before B if the output
of A happens to be an input to B� This partially ordered data �ow graph is
represented as an arbitrarily ordered list� whereby the data dependency between
the nodes is respected�
The following term gives an example for a data �ow graph representation in

HOL� The synthesis state in �gure ��I is formally represented as follows�

�
a� b� c��
let p � a � b in

let s � b� c in

let q � s� c in

let r � p � q in

let t � p� s in

let x � r � t in

let y � r � t in

x� y�

A constructor function named mk�dfg and a destructor function dest�dfg have
been implemented� In ML� dfg�s are represented with the following type�

type dfg �

�

inputs�term list�

outputs�term list�

operations �

�operator�term� invars�term list� outvars�term list� list

��

mk�dfg maps ML terms of type dfg to the corresponding HOL term� dest�dfg
is the inverse function�
During scheduling� the function g is split into a concatenation of functions

g�� g�� � � � � gk with g � gk � � � � � g� � g� and each function again represents a data
�ow graph� The synthesis states described in �gures ��II and ��III are formally
represented as follows�

hdfgki � � � � � hdfg�i � hdfg�i

During the allocation and binding of the function units� a compound function
unit FU is introduced as an abbreviation� This abbreviation is described by
means of a ��redex� The synthesis state described in �gure ��IV is represented
as follows�

let FU � hdfgi in
hdfg�ki � � � � � hdfg��i � hdfg��i

end

In this representation� each data �ow graph hdfg�ii consists of a single FU oper�
ator�

� Transforming the Data Flow Graphs within HOL

This section describes� how the synthesis process described in �gure � is imple�
mented as a conversion in HOL� Our high level synthesis conversion is steered
by external control information
the schedule� the register�allocation table� etc���
In this section we will only describe the logical aspects of formally deriving the
synthesis result from the input data �ow graph� The computation of the control
information and invocation of the external heuristics will be discussed in section
��
The approach is based on a conversion for normalizing functions� We will �rst

describe this conversion and then describe� how the synthesis steps are realized
using this conversion�

Function Normalization

All HOL representations corresponding to �gure � are nothing but simple compo�
sitions of the same basic functions� In principle� normalizing such representations
is pretty simple� The general algorithm looks as follows�

�� the original term g is converted to �
x�� x�� � � � xm��g
x�� x�� � � � xm� by ap�
plying a paired ��reduction in the inverse direction

	� the � operations are expanded by rewriting with the de�nition of �
if there
are any� and the function unit abbreviation is expanded
provided there is
one�

� ��reductions and paired ��reductions are performed wherever possible

In all cases� the result looks as follows�

�
x�� x�� � � � xm��v�x�� x�� � � � � xm�

In v�x�� x�� � � � xm� there are no ��redices left and there is nothing but pure
function applications�

A Universal Conversion

We will now introduce a simple conversion which is applicable to all synthesis
steps
�gure 	��

tt = t = t tt

z

=

z

dest

t t

mk

s
synthesis
heuristic

HOL representation

ML representation

normalizationnormalization

Fig� �� Universal Conversion for all Synthesis Steps

�� The HOL term representation t is switched to its ML representation z� This
is performed by applying some dest�function� which is based on dest�dfg

see section
��
	� For the next step some external control information s
schedule� register allo�
cation table� etc�� is required� which is produced by some arbitrary heuristic�
According to s� z is then mapped to some new ML data structure z� corre�
sponding to the result of the synthesis step under consideration� Step 	 is
performed completely outside the logic�

� The data structure z� is translated back to its HOL representation t�� This
is performed by applying some mk�function� which is based on mk�dfg
see
section
��

�� Both t and t� are normalized by means of applying a normalization conver�
sion� The results should be the same� � t � �t and � t� � �t�

�� The equations � t � �t and � t� � �t are combined to � t � t�
symmetry and
transitivity of equivalence��

The major drawback of this universal conversion is the complexity of step �
when dealing with dfgs with a big depth� i�e� maximum number of operations on
a path from some input to some output� Data �ow graphs whose intermediate
nodes have larger fanouts� i�e� the output of a node is used by many successor
nodes as inputs� lead to a number of duplications during ��reduction� Since such
��redices can be nested� the term size and time consumption in step � may grow
exponentially with the depth�
The universal conversion not only works for single synthesis step� but it

is also possible to combine several of our synthesis steps within step 	 of the
conversion� Applying the universal conversion mechanism to the entire synthesis
process reduces the time consumption since step � has to be performed only once
rather than thrice
scheduling� register allocation � binding and FU allocation
� binding��

� An Advanced Conversion

The universal conversion is comparable to post�synthesis veri�cation and does
not exploit any knowledge about how the synthesis step was performed� In this
section� we will describe an advanced conversion� where synthesis is performed
by a sequence of conversions which are optimized for a speci�c synthesis step�
Thereby� one can exploit the knowledge corresponding to this speci�c synthesis
step� In principle� each of these conversions is similar to the universal conversion
except that steps 	 and � are tuned towards a speci�c synthesis transforma�
tion� Although the advanced conversion is performed in several small parts� and
therefore the technique described in section � has to be applied more often� the
overall cost is reduced due to the remarkably lower cost for step � within each
part�

The Scheduling Conversion

The idea of our scheduling conversion is to split the data �ow graph step by
step rather than doing it all at once� as in the universal synthesis conversion�
��reduction is only applied to those variables whose corresponding nodes have
been assigned to the current control step� Although some ��redices will remain�
the terms achieved after normalization will be equal�
Other than in the universal synthesis conversion� k � � conversions
k �

number of control steps� have to be applied successively rather than applying
one single conversion� Hence� the exponential complexity associated with step �
is avoided�
Figure
 shows a HOL session performing the scheduling step applied to

the example of �gure �� The HOL conversion SCHEDULING�CONV accomplishes

the scheduling transformation according to the schedule which is determined
by the scheduling heuristic� SCHEDULING�CONV gets the scheduling heuristic as a
parameter� In this example� we applied the force�directed scheduling heuristic�
Any other scheduling heuristic can be embedded as well
see section ��� For sake
of readability� we used let�expressions rather than ��redices� EXPAND�LETS�CONV
and ABBREVIATE�LETS�CONV have been applied to convert let�expressions to ��
redices and vice versa�

� �

EXPAND�LETS�CONV THENC

�SCHEDULING�CONV force�directed� THENC

UNEXPAND�LETS�CONV

�

������a�b�c��

let p 	 a
b in

let s 	 b�c in

let q 	 s�c in

let r 	 p
q in

let t 	 p�s in

let x 	 r�t in

let y 	 r
t in

�x�y�

�����

	 	 	 	 	 	 	 	 	 	 	 	 	 	 val it 	

� ���a�b�c��

let p 	 a
 b

in

let s 	 b � c

in

let q 	 s � c

in

let r 	 p
 q

in

let t 	 p � s in let x 	 r � t in let y 	 r
 t in x�y� 	

�����r�t�� let x 	 r � t in let y 	 r
 t in x�y� o

���p�q�s�� let r 	 p
 q in let t 	 p � s in r�t�� o

���a�b�c�s�� let p 	 a
 b in let q 	 s � c in p�q�s�� o

���a�b�c�� let s 	 b � c in a�b�c�s� � thm

�

Fig� �� HOL session performing a scheduling step

The Register Allocation and Binding Conversion

Register allocation and binding have one thing in common� they only have an
e�ect on the interfaces between the slices� In our register allocation and binding
conversion� the interfaces are changed step by step rather than all at once� The
interfaces between hdfgii and hdfgi��i are changed by applying the universal
synthesis conversion to hdfgii � hdfgi��i� Therefore in each step our universal
synthesis conversion only has to be applied to a small subterm the rest of the

term remains unchanged� Again k� � applications are needed to do the job� but
it pays out since the data �ow graph considered is signi�cantly smaller�
To be able to apply the interface changing conversion to all subterms hdfgii�

hdfgi��i� the associative law of the ��operation has to applied� The number of
the associative law rule applications needed in our implementation is 	
k � 	��

The Function Allocation and Binding Conversion

Function allocation and binding only convert slices to equivalent ones and the FU
abbreviation is performed� Therefore� besides expanding the FU abbreviation�
one can apply our general synthesis conversion scheme to each slice separately�
k steps are needed rather than one� but again the data �ow graphs considered
have a smaller depth�

� Experimental Results

We used a scalable data �ow graph as a benchmark� It realizes the division of
two polynomials with the given coe�cients �i and �i�

p�qP
i��

�i x
i

pP
i��

�i xi
�

qX

i��

�i x
i �

p��P
i��

	i x
i

pP
i��

�i xi

The coe�cients �i and 	i should be computed� To facilitate the calculation�
we assume that the divisor is normalized with respect to �p� After a few algebraic
transformations we get the following two formulas for the demanded coe�cients�

�i � �i�p �

minfi�p�qgX

k�i��

�i�p�k � �k i � � � � � q

	j � �j �

minfj�qgX

k��

�j�k � �k j � � � � � p� �

Using these formulas� the data �ow graph can be realized very quickly� To
illustrate the underlying structure� a data �ow graph with p �
 and q � � is
shown in �gure ��
The data �ow graph consists of p � q subtractors� p
q � �� multipliers and

q
p � �� adders� so there is a total of 	pq � 	p nodes� The critical path has a
length of
q�	 nodes� In simpli�ed terms� q controls the depth of the data �ow
graph whereas p determines the width�
We applied both the simple conversion presented in section � as well as the

advanced conversion described in section �� The runtimes� for the conversions

� All experiments have been run on a SUN ULTRA SPARC with ���MB�

β0 α 7

*

α 6 α 5 α 4 α 3 α 2

γ
3

γ
2

γ
1

γ
0 δ

2

-

-

*

*
*

*

*

*

-

-

-

*

*

*
*

*
*

* +

+
+

+
+

+

-

α 1

δ
1

-

α 0

δ
0

+
+

ββ1 2

*

γ
4

4

1 2

3

9

8

15

5

10

6

7

14

21

11 12

16

13

20

18

19

24

26

17

22

25

29

27

23

28

30

Fig� �� A data �ow graph with p�� and q��

time �s�

nodes� �� ��� ��� ��� ���

�

���

���

���

�� simple conversion

advanced conversion

Fig� 	� Comparison simple�advanced conversion� p � �� q � �� �� � � �

are displayed in �gure �� It shows� that it pays out to interleave synthesis and
logical derivation thereby exploiting the knowledge on how the implementation
was derived� i�e� which synthesis steps have been applied and how they have been
performed� The idea behind the technique of the simple conversion is pretty close
to what one could do when performing post�synthesis veri�cation� As can be seen
in �gure �� some intermediate results
�� � � � �q� are used more often� which leads
to an exponentially growth of ��redices in the universal conversion as shown in

time �s�

nodes� ��� ���
�� ��� ���� ���� ����
�

����

����

����

���

����
p � �

q � �� ��� ��� ��� ��� 	�

p � ��

q � �� ��� ��� ��� �	� ��

p � ��

q � �� ��
� ��� ��� ��

Fig�
� Advanced conversion applied to DFGs with di�erent p and q

section �� During the conversion this results in an exponential consumption of
both time and data storage� Therefore� the simple conversion is applicable only
to very small sized circuits� In our example� the execution failed for bigger data
�ow graphs due to a lack of memory� The advanced conversion� however� did not
run into space hurdles and could therefore also be applied to considerably bigger
data �ow graphs
see �gure ���

� Embedding Existing High Level Synthesis Algorithms

The conversions described in the sections � and � are our basis for implement�
ing synthesis tools in HOL� They are controlled by parameters telling them�
how to perform the synthesis step
the schedule� the mapping between registers
and variables etc��� Arbitrary heuristics can be invoked to compute this control
information�
The heuristics invoked in section � have all been very primitive� For schedul�

ing� a simple ASAP algorithm was used� Since the operands and results in all
operations are of the same logical type� register allocation became trivial� The
register binding was generated randomly optimization aspects were not con�
sidered�
However� we also invoked more sophisticated synthesis heuristics� Table �

shows di�erent schedules achieved by di�erent scheduling techniques� The sched�
ules describe how the nodes
as numbered in the DFG in �gure �� are mapped
to control steps� There are mainly two optimization goals for these algorithms�
the number of control steps required and the number of operation units needed
for the implementation�

In general� implementations with a big number of control steps can be re�
alized with a small number of operation units whereas being restricted to a
small number of control steps leads to a big number of operation units� There
are mainly two kinds of scheduling algorithms� ones with hardware constraints
and others with timing constraints� For a given restriction on the number of

operation units� scheduling algorithms with hardware constraints try to �nd a
schedule with a minimal number of control steps� Scheduling algorithms with
timing constraints are the other way around� for a given limitation on the num�
ber of control steps� the algorithm tries to �nd a schedule with a minimal number
of hardware requirements�

The ASAP�ALAP algorithm
as soon�late as possible� assigns the nodes to
the earliest�latest control step according to the restrictions given by the data
dependencies� The force directed heuristic �PaKn��� tries to minimize the hard�
ware by distributing it uniformly over the control steps� The heuristic is modeled
after the calculation of the equilibrium for a set of springs and weights which
obey the Hooke�s law� The ASAP� the ALAP and the force directed scheduling
algorithm do not place any restriction on the hardware and produce a sched�
ule with a minimal number of control�steps� The
static� list scheduling heuristic
�JMSW��� has a given restriction on the hardware consumption and tries to min�
imize the number of control steps needed according to a precalculated priority
list�

In our example� the ASAP produced a schedule with a total of � operation
units

 multipliers� 	 adders and 	 subtractors�� the result of the ALAP required
� operation units

 multipliers� 	 adders and
 subtractors�� and the force�
directed algorithm required � operation units
	 multipliers� 	 adders and

subtractors�� For the list scheduling algorithm� the number of multipliers was
limited to �� the number of subtractors was limited to 	 and the number of adders
was also limited to 	� However� it required two extra control steps compared to
the other techniques� According to our experiments� the time for the logical
transformation is independent from the synthesis algorithm invoked� ����s for
the ASAP� ���	s for the ALAP� ����s for the force�directed and ����s for the list
scheduling algorithm�

In our approach� a synthesis step can be divided into two parts� computa�
tion of the control information and execution of the transformation within the
logic
�gure ��� Two important points are met independently with this strategy�
quality and correctness of the implementation� The quality only depends on the
algorithm that calculates the control information� whereas the correctness aspect
is guaranteed due to the transformation being based on the HOL system�

Since the entire synthesis process is nothing but a HOL conversion� correct�
ness is guaranteed implicitly� Faulty implementations cannot be achieved even
if the control information produced by the external program is �awed� such as a
schedule where the data dependencies are disregarded� In such cases� the trans�
formation cannot be performed within the logic and an exception is raised� In
conventional synthesis programs� such bugs could lead to faulty implementa�
tions� Our formal synthesis program either leads to correct implementations or
to no implementation but an exception� In case of an exception� an information
is produced telling the user in which synthesis step the error occurred�

The optimization tasks corresponding to high level synthesis steps are very
complex and mutually depend on one another� Thus heuristics have to be in�
volved� The major advantage of our approach is� that we can exploit the existing

Heuristics
C�Step ASAP ALAP Force�Directed List Scheduling

� ����� � � �
� � � ��� ���
� ������� ��� � �
� ���� � ���� �
�

����
���� ���

 ������� ���� �������
������
� ����
 �� ����
 �
� �� �������� �� �����
� �������
 ����
 �� ����
���
�� ����� �� ����� ��
�� �� �������� �������
 �����
�� �������� ����������
 �������� �������

�� �������� �������� �������� ��
�� ����� �������� �������� �����
�� � � � ��������
�
 � � � �����

Fig� �� Control information derived by di�erent scheduling algorithms� p��� q��

synthesis
technique

logical

synthesis input

synthesis output

control information transformation

Fig� �� The concept of our high level synthesis process

techniques� Our synthesis conversions o�er the interface for embedding arbitrary
conventional high level synthesis algorithms dedicated to the corresponding syn�
thesis task� This has the e�ect� that � in contrast to most formal synthesis
approaches we do not have to invent new synthesis algorithms�
Although the conversions described in section � have to be performed in the

given order� there is no restriction on how to compute the corresponding control
information� It is possible to determine it step by step as sketched in the left
side of �gure � and one can as well determine it all at once as in the right side
of �gure �� What really matters is that the control information is delivered to

the conversions in the given order the order in which they are computed
is ambiguous� Therefore� it is possible to embed arbitrary external synthesis
algorithms� This aspect is of big importance since there is no limit as to the
achievable quality of synthesis tools based on our approach�

synthesis
step

synthesis
step

logical
transformation

logical
transformation

logical
transformation

logical
transformation

logical
transformation

logical
transformation

synthesis
step

FU allocation
& binding

& binding

allocation
register

scheduling

synthesis
steps

Fig�
� Possibles schemes for the using of our synthesis conversions

� Conclusion

We have described how high level synthesis can be performed by a sequence of
logical transformations� The novelty of our approach lies in the exploitation of the
existing knowledge in synthesis in a logically correct manner� As in conventional
synthesis programs� �nding suitable hardware representations and corresponding
algorithms is essential for the e�ciency� We have shown that it is possible to
map algorithms and data of standard synthesis tools to logical conversions and
representations in HOL�
Due to the expressiveness of HOL� general veri�cation is an exacting goal�

In our approach� however� the proof is constructed rather than !guessed" as in
post�synthesis veri�cation� Since our approach does not lead to NP�complete or
undecidable problems� we believe� that formal synthesis is a well suited applica�
tion for the HOL system�
In our recent work it turns out� that also in other abstraction levels of

hardware design� formal synthesis can be a good alternative to the classical

synthesis�post�synthesis veri�cation approach �EiKu���� It is our intention to
provide a formal synthesis toolbox called HASH containing formally based syn�
thesis steps that cover the entire synthesis from the algorithmic level down to
the logical level�
For the hardware designer� there is no di�erence between using synthesis

tools based on HASH and conventional synthesis tools� However� formal syn�
thesis guarantees correctness� implicitly� This style of formal synthesis will be
acceptable to most users since they can proceed with their designs in a cus�
tomary manner and yet have correctness without getting into the hardship of
logic�

References

�AHL��� AHL� Lambda Reference Manual� �����
�Camp��� R� Camposano� Path�based scheduling for synthesis� IEEE Transactions

on Computer Aided Design� ������������ January �����
�CaWo��� R� Camposano and W� Wolf� High�Level VLSI Synthesis� Kluwer� Boston�

�����
�EiKu��� D� Eisenbiegler and R� Kumar� An automata theory dedicated towards for�

mal circuit synthesis� In Higher Order Logic Theorem Proving and Its Ap�

plications� Aspen Grove� Utah� USA� September ����� Springer�
�GDWL��� D� Gajski� N� Dutt� A� Wu� and S� Lin� High�Level Synthesis� Introduction

to Chip and System Design� Kluwer Academic Publishers� �����
�Gupt��� A� Gupta� Formal hardware veri
cation� Formal Methods in System De�

sign� ��������������� �����
�HaLD��� F�K� Hanna� M� Longley� and N� Daeche� Formal synthesis of digital sys�

tems� In IMEC�IFIP Workshop on Applied Formal Methods for Correct

VLSI Design� pages �������� Leuven�Belgium� ����� Elsevier Science Pub�
lishers B�V�

�JMSW��� R� Jain� A� Mujumdar� A� Sharma� and H� Wang� Empirical evaluation of
some high�level synthesis scheduling heuristics� In DAC ���� pages ��������
�����

�John��� S� Johnson� Synthesis of Digital Designs from Recursion Equations� MIT
Press� �����

�JoSh��� G� Jones and M� Sheeran� Circuit design in Ruby� In J� Staunstrup� editor�
Formal Methods for VLSI Design� pages ������ North�Holland� �����

�Lars��� M� Larsson� An engineering approach to formal system design� In
Thomas F� Melham and Juanito Camilleri� editors� Higher Order Logic The�
orem Proving and Its Applications� pages �������� Valetta� Malta� Septem�
ber ����� Springer�

�Melh��� T� Melham� Higher Order Logic and Hardware Veri�cation� Cambridge
University Press� �����

�PaKn��� Pierre G� Paulin and John P� Knight� Force�directed scheduling for the be�
havioral synthesis of asic�s� IEEE Transactions on Computer Aided Design�
��
��

��
��� June �����

This article was processed using the LATEX macro package with LLNCS style

