Implementation Issues about the Embedding of
Existing High Level Synthesis Algorithms in
HOL ~*

Dirk Eisenbiegler!, Christian Blumenrdhr! and Ramayya Kumar?

! Institute for Circuit Design and Fault Tolerance (Prof. Dr.-Ing. D. Schmid),
University of Karlsruhe, Germany
2 Forschungszentrum Informatik (Prof. Dr.-Ing. D. Schmid), Karlsruhe, Germany
e-mail: eisen@ira.uka.de, blumen@ira.uka.de, kumar@fzi.de

Abstract. This article describes the embedding of high level synthesis
algorithms in HOL. For given standard synthesis steps, we describe, how
its data can be mapped to terms in HOL and the synthesis process be ex-
pressed by means of a logical derivation. In contrast to post-synthesis ver-
ification techniques our approach is constructive in a sense that the proof
is derived during synthesis rather than “guessed” afterwards. Therefore
one does not get into the hardship of NP-completeness or undecidability.
Our approach ensures correctness based on the HOL system and is also
performed fully automatically.

1 Introduction

During the hardware design process of digital circuits, more and more complex
tools are involved. Due to their complexity, guaranteeing the correctness of syn-
thesis software is crucial. Bugs in the software may lead to incorrect hardware
implementations.

One approach towards proving the correctness of implementations is by post-
synthesis verification. An excellent overview of verification techniques is given in
[Gupt92, Melh93]. However, full automation is only achievable for comparatively
small sized circuits at lower levels of abstraction. For large sized circuits, verifi-
cation algorithms either run into space/time hurdles or the user has to interact
and perform some proofs by hand.

Formal synthesis is another approach towards hardware correctness. We con-
sider formal synthesis as a derivation of the implementation from the specifica-
tion by logical refinements.

We are developing a formal synthesis toolbox called HASH (Higher order
logic Applied to Synthesis of Hardware) which exploits standard synthesis algo-
rithms and is applicable to different abstraction levels. It is based on the HOL
system, i.e. hardware is represented by means of HOL terms, and only rule appli-
cations are used to transform hardware descriptions. As opposed to conventional

* This work has been partly financed by the Deutsche Forschungsgemeinschaft, Project
SCHM 623/6-1.

synthesis tools, where there is no restriction on how to compute the implemen-
tation, our approach can only produce correct hardware implementations. The
reliability of our synthesis conversions only depends on the correctness of the
implementation of the HOL core and is independent from the complexity of the
conversions. In this article, we will present the high level synthesis component
of HASH.

Other approaches in the area of formal synthesis are [Lars94, AHL92, HaL D89,
John84, JoSh90]. All these above-mentioned techniques have one common draw-
back, namely they do not exploit the knowledge of the algorithms which abound
in synthesis. Additionally, the interactions to be performed during synthesis are
at the schematic level or from a logician’s point of view. The novelty of our cur-
rent approach is that no new synthesis algorithms (either formal or informal) are
proposed, but a general scheme for logically embedding various existing synthesis
algorithms within a formal set-up is presented.

The outline of this paper is as follows: We will first describe the high level
synthesis procedure in an informal manner (section 2). Then the logical repre-
sentations and the logical transformations corresponding to the synthesis process
are introduced in sections 3, 4 and 5. Afterwards, we will present some experi-
mental results (section 6) and finally discuss the embedding of existing high level
synthesis techniques (section 7).

2 Our High Level Synthesis Process

The starting point of our approach is a so called basic block. Basic blocks are
data flow graphs describing the input/output relation by a composition of atomic
operations. The timing of the atomic operations is static in a sense that they
can be executed in fixed time (see figure 1). The functional relation represents
a pure algorithmic description without any timing information.

The result of high level synthesis is a structure at the RT-level. Our syn-
thesis process consists of the following steps: scheduling, register allocation and
binding, allocation and binding of functional units. Interface synthesis will not
be considered in this paper.

Our implementation' does not yet allow pipelining, instead all hardware
resources (functional units as well as registers) will be reused during different
clock ticks of one evaluation period.

Also the synthesis approach currently does not support any control flow. For
more details on high level synthesis see [GDWL94, CaWo91].

Scheduling

Scheduling determines the number of control steps k needed for the evaluation of
the algorithm and assigns each operation to one particular control step 0,1,...,k

! Currently, no chaining of functional units and no multi-cycle operation units are
used.

I
scheduling
II
register
allocation
& binding
III
function unit
allocation
& binding
v

Fig. 1. High Level Synthesis Process

(see figure 1). There are mainly two costs, that have to be considered: the number
of control steps k£ and the hardware resources required for implementing the
operations. During scheduling, a trade off between the number of control steps
k (speed of the implementation) and the hardware requirements (size of the
implementation) has to be found.

Mainly there are two kinds of scheduling algorithms: ones with pregiven
hardware constraints for the operation units and others with pregiven timing
constraints. However, the implementation at the RT-level not only consists of
operation units but also of communication units. The cost for these units can
only be roughly estimated during the scheduling process. There are also advanced
synthesis algorithms with their cost functions covering timing aspects as well
as different hardware constraints. Such algorithms can be used to also handle
sophisticated synthesis tasks. A schedule algorithm that is suitable for control
flow paths is e.g. path-based scheduling [Camp91], whereas [PaKn89] introduces
a possible schedule technique named force-directed only applicable to data flow
graphs.

Register Allocation and Binding

The register allocation determines the number of registers needed for storing
intermediate results between two control steps. The register binding determines
a mapping between registers and auxiliary variables (intermediate results) for
every control step.

In case there is only one single data type for all auxiliary variables, register
allocation becomes trivial. The number of registers needed equals the maximum
number of auxiliary variables between two control steps. In general, there may be
auxiliary variables with different types. Different sizes of registers will be needed
to store them. This makes register allocation more complex.

Register allocation and binding have an impact on the size needed for the
communication parts between function units and registers. Good register bind-
ings and allocations avoid additional hardware.

Function Unit Allocation and Binding

In this step, we construct a compound functional unit FU providing the operators
for implementing the operations of each control step (allocation), and we use
the compound functional unit FU to implement the operations of the data flow
graph (binding). The function units are assumed to be given in a library. The
library describes the mapping between its components and the operation(s) they
can perform. There may be function units that are implementations of single
operations as well as multi-purpose units with control input signals for selecting
different operations. In our example, the function units consists of a multiplier
implementing the x-operation and a multi-purpose unit implementing the + and
— operation, where the operation is selected by a control signal having one of
the values 0 and 1, respectively. Besides the functional aspects, the library also
contains cost information such as area and power consumption.

3 Formal Representation of Data Flow Graphs

The efficiency of software strongly depends on the underlying data structures.
In synthesis tools, suitable hardware representations have to be found. This also
holds for our formal synthesis approach, where hardware is represented by means
of HOL terms. In our approach, data flow graphs are represented as follows:

Az, oy Tm).

let (outvars;) = op, (invars;) in
let (outvarss) = op,(invarss) in

let {(outvars;) = op,{invars;) in

(yla st 7y’n)
The above structure describes its input/output function in terms of its basic
operations. w1,s,...,Ty, are the inputs, yi,y2,...,y, the outputs and op;,
Ops, - . .,0p; the operations of the data flow graph. let-terms are only used for a

better readability of S-redices. Each let-term describes the connectivity of one
operation. For all 4, (invars;) and (outvars;) denote the inputs and outputs of
operation op;, respectively. The inputs and outputs of operations are tuples,
with each operation having a specific arity of its input and output tuple.

Since these terms represent pure data flow graphs, i.e. no cycles are present,
a partial ordering on the set of nodes is induced. This partial order corresponds
to the fact, that some operation A must be executed before B if the output
of A happens to be an input to B. This partially ordered data flow graph is
represented as an arbitrarily ordered list, whereby the data dependency between
the nodes is respected.

The following term gives an example for a data flow graph representation in
HOL. The synthesis state in figure 1/I is formally represented as follows:

Aa, b, c).

let p=axbin
let s =b+cin
let g =s+cin
let r = pxgqin
lett =p—sin
letz =1r+tin
lety = rxt in

(z,y)

A constructor function named mk_dfg and a destructor function dest_dfg have
been implemented. In ML, dfg’s are represented with the following type:

type dfg =
{
inputs:term list,
outputs:term list,

operations :
{operator:term, invars:term list, outvars:term list} list

};

mk_dfg maps ML terms of type dfg to the corresponding HOL term. dest_dfg
is the inverse function.

During scheduling, the function g is split into a concatenation of functions
91,92, --,9k With g = g o...0g20¢g; and each function again represents a data
flow graph. The synthesis states described in figures 1/II and 1/III are formally
represented as follows:

(dfgy) o ... o (dfgy) o (dfg;)

During the allocation and binding of the function units, a compound function
unit FU is introduced as an abbreviation. This abbreviation is described by
means of a f-redex. The synthesis state described in figure 1/IV is represented
as follows:

let FU = (dfg) in

(dfg’)) o ... o (dfg’y) o (dfg’)
end

In this representation, each data flow graph (dfg’;) consists of a single FU oper-
ator.

4 Transforming the Data Flow Graphs within HOL

This section describes, how the synthesis process described in figure 1 is imple-
mented as a conversion in HOL. Our high level synthesis conversion is steered
by external control information (the schedule, the register-allocation table, etc.).
In this section we will only describe the logical aspects of formally deriving the
synthesis result from the input data flow graph. The computation of the control
information and invocation of the external heuristics will be discussed in section
7.

The approach is based on a conversion for normalizing functions. We will first
describe this conversion and then describe, how the synthesis steps are realized
using this conversion.

Function Normalization

All HOL representations corresponding to figure 1 are nothing but simple compo-
sitions of the same basic functions. In principle, normalizing such representations
is pretty simple. The general algorithm looks as follows:

1. the original term g is converted to A(z1,z2,...Zm).9(T1, T2, ... Ty) by ap-
plying a paired n-reduction in the inverse direction

2. the o operations are expanded by rewriting with the definition of o (if there
are any) and the function unit abbreviation is expanded (provided there is
one)

3. p-reductions and paired B-reductions are performed wherever possible

In all cases, the result looks as follows:
Az, T, T V[T, T2, . -, Ty

In v[zy,zs,...x,] there are no [-redices left and there is nothing but pure
function applications.

A Universal Conversion

We will now introduce a simple conversion which is applicable to all synthesis
steps (figure 2).

normalization normalization
t—tt=t— rt=t —rt'=t—1t

HOL representation

dest mk ML representation

z z
syntM
heuristic s

Fig. 2. Universal Conversion for all Synthesis Steps

1. The HOL term representation ¢ is switched to its ML representation z. This
is performed by applying some dest-function, which is based on dest_dfg
(see section 3).

2. For the next step some external control information s (schedule, register allo-
cation table, etc.) is required, which is produced by some arbitrary heuristic.
According to s, z is then mapped to some new ML data structure z' corre-
sponding to the result of the synthesis step under consideration. Step 2 is
performed completely outside the logic.

3. The data structure 2’ is translated back to its HOL representation t'. This
is performed by applying some mk-function, which is based on mk_dfg (see
section 3).

4. Both t and t' are normalized by means of applying a normalization conver-
sion. The results should be the same: -t =t and + ' = ¢.

5. The equations ¢t = { and F ' = { are combined to F ¢ = ¢/ (symmetry and
transitivity of equivalence).

The major drawback of this universal conversion is the complexity of step 4
when dealing with dfgs with a big depth, i.e. maximum number of operations on
a path from some input to some output. Data flow graphs whose intermediate
nodes have larger fanouts, i.e. the output of a node is used by many successor
nodes as inputs, lead to a number of duplications during -reduction. Since such
[B-redices can be nested, the term size and time consumption in step 4 may grow
exponentially with the depth.

The universal conversion not only works for single synthesis step, but it
is also possible to combine several of our synthesis steps within step 2 of the
conversion. Applying the universal conversion mechanism to the entire synthesis
process reduces the time consumption since step 4 has to be performed only once
rather than thrice (scheduling, register allocation & binding and FU allocation
& binding).

5 An Advanced Conversion

The universal conversion is comparable to post-synthesis verification and does
not exploit any knowledge about how the synthesis step was performed. In this
section, we will describe an advanced conversion, where synthesis is performed
by a sequence of conversions which are optimized for a specific synthesis step.
Thereby, one can exploit the knowledge corresponding to this specific synthesis
step. In principle, each of these conversions is similar to the universal conversion
except that steps 2 and 4 are tuned towards a specific synthesis transforma-
tion. Although the advanced conversion is performed in several small parts, and
therefore the technique described in section 4 has to be applied more often, the
overall cost is reduced due to the remarkably lower cost for step 4 within each
part.

The Scheduling Conversion

The idea of our scheduling conversion is to split the data flow graph step by
step rather than doing it all at once, as in the universal synthesis conversion.
[B-reduction is only applied to those variables whose corresponding nodes have
been assigned to the current control step. Although some f-redices will remain,
the terms achieved after normalization will be equal.

Other than in the universal synthesis conversion, k — 1 conversions (k —
number of control steps) have to be applied successively rather than applying
one single conversion. Hence, the exponential complexity associated with step 4
is avoided.

Figure 3 shows a HOL session performing the scheduling step applied to
the example of figure 1. The HOL conversion SCHEDULING_CONV accomplishes

the scheduling transformation according to the schedule which is determined
by the scheduling heuristic. SCHEDULING_CONV gets the scheduling heuristic as a
parameter. In this example, we applied the force-directed scheduling heuristic.
Any other scheduling heuristic can be embedded as well (see section 7). For sake
of readability, we used let-expressions rather than S-redices. EXPAND_LETS_CONV
and ABBREVIATE_LETS_CONV have been applied to convert let-expressions to (-
redices and vice versa.

- (
EXPAND_LETS_CONV THENC
(SCHEDULING_CONV force_directed) THENC
UNEXPAND_LETS_CONV
)

(--‘\(a,b,c).
let p = a*b in
let s = bt+c in
let q = s+c in
let r = pxq in
let t = p-s in
let x = r+t in
let y = r*t in
(x,y)
=-);
==============val it =
I- (\(a,b,c).

let p=ax*xb

in

let s =b + c

in

let g =s + ¢

in

let r =p * q

in

let t =p - s in let x =r + t in let y = r * t in x,y) =
(((\(r,t). let x =r + t in let y = r * t in x,y) o

(\(p,q,s). let r = p * q in let t = p - s in r,t)) o
(\(a,b,c,s). let p =a * b in let q = s + ¢ in p,q,s)) o
(\(a,b,c). let s = b + ¢ in a,b,c,s) : thm

Fig. 3. HOL session performing a scheduling step

The Register Allocation and Binding Conversion

Register allocation and binding have one thing in common: they only have an
effect on the interfaces between the slices. In our register allocation and binding
conversion, the interfaces are changed step by step rather than all at once. The
interfaces between (dfg;) and (dfg;,,) are changed by applying the universal
synthesis conversion to (dfg;) o (dfg;,,). Therefore in each step our universal
synthesis conversion only has to be applied to a small subterm — the rest of the

term remains unchanged. Again k — 1 applications are needed to do the job, but
it pays out since the data flow graph considered is significantly smaller.

To be able to apply the interface changing conversion to all subterms (dfg;) o
(dfg;,), the associative law of the o-operation has to applied. The number of
the associative law rule applications needed in our implementation is 2(k — 2).

The Function Allocation and Binding Conversion

Function allocation and binding only convert slices to equivalent ones and the FU
abbreviation is performed. Therefore, besides expanding the FU abbreviation,
one can apply our general synthesis conversion scheme to each slice separately.
k steps are needed rather than one, but again the data flow graphs considered
have a smaller depth.

6 Experimental Results

We used a scalable data flow graph as a benchmark. It realizes the division of
two polynomials with the given coefficients a; and 3;:

pt+q . p—1 .
Z a; xt q Z 0; 1°
T =l —
Y Bixt =0 Y Bt
i=0 =0

The coefficients 7; and d; should be computed. To facilitate the calculation,
we assumne that the divisor is normalized with respect to 3,. After a few algebraic
transformations we get the following two formulas for the demanded coefficients:

min{i+p,q}
Vi=Qigp— D Bitok % 1=0...q
k=i+1
min{j,q}
0j = o — Z Bi—k Yk j=0...p—-1
k=0

Using these formulas, the data flow graph can be realized very quickly. To
illustrate the underlying structure, a data flow graph with p = 3 and ¢ = 4 is
shown in figure 4.

The data flow graph consists of p + ¢ subtractors, p(q + 1) multipliers and
g(p — 1) adders, so there is a total of 2pg + 2p nodes. The critical path has a
length of 3¢ + 2 nodes. In simplified terms, ¢ controls the depth of the data flow
graph whereas p determines the width.

We applied both the simple conversion presented in section 4 as well as the
advanced conversion described in section 5. The runtimes? for the conversions

2 All experiments have been run on a SUN ULTRA SPARC with 128MB.

17 18

22
*
%) 20 2 24

28

27
R A
*

Yo s 1, Y Yo)) 3

Fig. 4. A data flow graph with p=3 and q=4

time [s]
600 simple conversion
450
300
150

0 1 T T T =
0 50 100 150 200 250 nodes

advanced conversion

Fig. 5. Comparison simple/advanced conversion, p =5, ¢ =1,2,...

are displayed in figure 5. It shows, that it pays out to interleave synthesis and
logical derivation thereby exploiting the knowledge on how the implementation
was derived, i.e. which synthesis steps have been applied and how they have been
performed. The idea behind the technique of the simple conversion is pretty close
to what one could do when performing post-synthesis verification. As can be seen
in figure 4, some intermediate results (7o .. .7,) are used more often, which leads
to an exponentially growth of S-redices in the universal conversion as shown in

time [s]

p=10
7500 —+ qg=1,11,21,31,37,50
p=>5
6000 ¢=1,11,21,36,60,75
4500 +
3000 +
p=25
1500 + qg=1,5,9,13,15,25
0 T T T T = = =

0 200 400 600 800 1000 1200 1400 nodes

Fig. 6. Advanced conversion applied to DFGs with different p and ¢

section 4. During the conversion this results in an exponential consumption of
both time and data storage. Therefore, the simple conversion is applicable only
to very small sized circuits. In our example, the execution failed for bigger data
flow graphs due to a lack of memory. The advanced conversion, however, did not
run into space hurdles and could therefore also be applied to considerably bigger
data flow graphs (see figure 6).

7 Embedding Existing High Level Synthesis Algorithms

The conversions described in the sections 4 and 5 are our basis for implement-
ing synthesis tools in HOL. They are controlled by parameters telling them,
how to perform the synthesis step (the schedule, the mapping between registers
and variables etc.). Arbitrary heuristics can be invoked to compute this control
information.

The heuristics invoked in section 6 have all been very primitive. For schedul-
ing, a simple ASAP algorithm was used. Since the operands and results in all
operations are of the same logical type, register allocation became trivial. The
register binding was generated randomly — optimization aspects were not con-
sidered.

However, we also invoked more sophisticated synthesis heuristics. Table 7
shows different schedules achieved by different scheduling techniques. The sched-
ules describe how the nodes (as numbered in the DFG in figure 4) are mapped
to control steps. There are mainly two optimization goals for these algorithms:
the number of control steps required and the number of operation units needed
for the implementation.

In general, implementations with a big number of control steps can be re-
alized with a small number of operation units whereas being restricted to a
small number of control steps leads to a big number of operation units. There
are mainly two kinds of scheduling algorithms: ones with hardware constraints
and others with timing constraints. For a given restriction on the number of

operation units, scheduling algorithms with hardware constraints try to find a
schedule with a minimal number of control steps. Scheduling algorithms with
timing constraints are the other way around: for a given limitation on the num-
ber of control steps, the algorithm tries to find a schedule with a minimal number
of hardware requirements.

The ASAP/ALAP algorithm (as soon/late as possible) assigns the nodes to
the earliest/latest control step according to the restrictions given by the data
dependencies. The force directed heuristic [PaKn89] tries to minimize the hard-
ware by distributing it uniformly over the control steps. The heuristic is modeled
after the calculation of the equilibrium for a set of springs and weights which
obey the Hooke’s law. The ASAP, the ALAP and the force directed scheduling
algorithm do not place any restriction on the hardware and produce a sched-
ule with a minimal number of control-steps. The (static) list scheduling heuristic
[JMSWO1] has a given restriction on the hardware consumption and tries to min-
imize the number of control steps needed according to a precalculated priority
list.

In our example, the ASAP produced a schedule with a total of 7 operation
units (3 multipliers, 2 adders and 2 subtractors), the result of the ALAP required
8 operation units (3 multipliers, 2 adders and 3 subtractors), and the force-
directed algorithm required 7 operation units (2 multipliers, 2 adders and 3
subtractors). For the list scheduling algorithm, the number of multipliers was
limited to 1, the number of subtractors was limited to 2 and the number of adders
was also limited to 2. However, it required two extra control steps compared to
the other techniques. According to our experiments, the time for the logical
transformation is independent from the synthesis algorithm invoked: 5.97s for
the ASAP, 5.72s for the ALAP, 5.78s for the force-directed and 6.15s for the list
scheduling algorithm.

In our approach, a synthesis step can be divided into two parts: computa-
tion of the control information and execution of the transformation within the
logic (figure 8). Two important points are met independently with this strategy:
quality and correctness of the implementation. The quality only depends on the
algorithm that calculates the control information, whereas the correctness aspect
is guaranteed due to the transformation being based on the HOL system.

Since the entire synthesis process is nothing but a HOL conversion, correct-
ness is guaranteed implicitly. Faulty implementations cannot be achieved even
if the control information produced by the external program is flawed, such as a
schedule where the data dependencies are disregarded. In such cases, the trans-
formation cannot be performed within the logic and an exception is raised. In
conventional synthesis programs, such bugs could lead to faulty implementa-
tions. Our formal synthesis program either leads to correct implementations or
to no implementation but an exception. In case of an exception, an information
is produced telling the user in which synthesis step the error occurred.

The optimization tasks corresponding to high level synthesis steps are very
complex and mutually depend on one another. Thus heuristics have to be in-
volved. The major advantage of our approach is, that we can exploit the existing

Heuristics
C-Step ASAP ALAP Force-Directed List Scheduling

1 1,49 1 1 1

2 2 2 2.4 2,4

3 3,18,15 3,4 3 9

4 5,10 5 5,15 3

5 6 6,8,9 6,8,9 5,8

6 7,14,21 7,10 7,10,14 6,10,15
7 11,16 11 11,16 7

8 12 12,14,15 12 11,14
9 13,20,26 13,16 13 12,16,21
10 17,22 17 17,21 13

11 18 18,20,21 18,20,26 17,20
12 19,25,29 19,22,25,26 19,22,25 18,22,26
13 23,27,30 23,27,29 23,27,29 19
14 24,28 24,28,30 24,28,30 23,25
15 - - - 24,27,29
16 - - - 28,30

Fig. 7. Control information derived by different scheduling algorithms, p=3, ¢g=4

synthesisinput

!

synthesis
technique

logica

control information | transformation

synthesis output

Fig. 8. The concept of our high level synthesis process

techniques. Our synthesis conversions offer the interface for embedding arbitrary
conventional high level synthesis algorithms dedicated to the corresponding syn-
thesis task. This has the effect, that — in contrast to most formal synthesis
approaches — we do not have to invent new synthesis algorithms.

Although the conversions described in section 5 have to be performed in the
given order, there is no restriction on how to compute the corresponding control
information. It is possible to determine it step by step as sketched in the left
side of figure 9 and one can as well determine it all at once as in the right side
of figure 9. What really matters is that the control information is delivered to

the conversions in the given order — the order in which they are computed
is ambiguous. Therefore, it is possible to embed arbitrary external synthesis
algorithms. This aspect is of big importance since there is no limit as to the
achievable quality of synthesis tools based on our approach.

synthesis synthesis
step steps
logical . logica
transformation scheduling transformation
synthesis
step
logical register logical
transformation | allocation transformation
& binding
synthesis
step
logical FU allocation logical
transformation | & hinding transformation

Fig. 9. Possibles schemes for the using of our synthesis conversions

8 Conclusion

We have described how high level synthesis can be performed by a sequence of
logical transformations. The novelty of our approach lies in the exploitation of the
existing knowledge in synthesis in a logically correct manner. As in conventional
synthesis programs, finding suitable hardware representations and corresponding
algorithms is essential for the efficiency. We have shown that it is possible to
map algorithms and data of standard synthesis tools to logical conversions and
representations in HOL.

Due to the expressiveness of HOL, general verification is an exacting goal.
In our approach, however, the proof is constructed rather than “guessed” as in
post-synthesis verification. Since our approach does not lead to NP-complete or
undecidable problems, we believe, that formal synthesis is a well suited applica-
tion for the HOL system.

In our recent work it turns out, that also in other abstraction levels of
hardware design, formal synthesis can be a good alternative to the classical

synthesis/post-synthesis verification approach [EiKu95]. It is our intention to
provide a formal synthesis toolbox called HASH containing formally based syn-
thesis steps that cover the entire synthesis from the algorithmic level down to
the logical level.

For the hardware designer, there is no difference between using synthesis
tools based on HASH and conventional synthesis tools. However, formal syn-
thesis guarantees correctness, implicitly. This style of formal synthesis will be
acceptable to most users since they can proceed with their designs in a cus-
tomary manner and yet have correctness without getting into the hardship of
logic.

References

[AHL92] AHL. Lambda Reference Manual, 1989.

[Camp91] R. Camposano. Path-based scheduling for synthesis. IEEE Transactions
on Computer Aided Design, 10(1):85-93, January 1991.

[CaWo091] R. Camposano and W. Wolf. High-Level VLSI Synthesis. Kluwer, Boston,
1991.

[EiKu95] D. Eisenbiegler and R. Kumar. An automata theory dedicated towards for-
mal circuit synthesis. In Higher Order Logic Theorem Proving and Its Ap-
plications, Aspen Grove, Utah, USA, September 1995. Springer.

[GDWL94] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis, Introduction
to Chip and System Design. Kluwer Academic Publishers, 1994.

[Gupt92] A. Gupta. Formal hardware verification. Formal Methods in System De-
sign, 1(2/3):151-238, 1992.

[HaLD89] F.K. Hanna, M. Longley, and N. Daeche. Formal synthesis of digital sys-
tems. In IMEC-IFIP Workshop on Applied Formal Methods for Correct
VLSI Design, pages 532-548, Leuven,Belgium, 1989. Elsevier Science Pub-
lishers B.V.

[JMSW91] R. Jain, A. Mujumdar, A. Sharma, and H. Wang. Empirical evaluation of
some high-level synthesis scheduling heuristics. In DAC 91, pages 210-215,
1991.

[John84] S. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT
Press, 1984.

[JoSh90] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor,
Formal Methods for VLSI Design, pages 13-70. North-Holland, 1990.

[Lars94] M. Larsson. An engineering approach to formal system design. In
Thomas F. Melham and Juanito Camilleri, editors, Higher Order Logic The-
orem Proving and Its Applications, pages 300-315, Valetta, Malta, Septem-
ber 1994. Springer.

[Melh93] T. Melham. Higher Order Logic and Hardware Verification. Cambridge
University Press, 1993.

[PaKn89] Pierre G. Paulin and John P. Knight. Force-directed scheduling for the be-
havioral synthesis of asic’s. IEEE Transactions on Computer Aided Design,
8(6):661-679, June 1989.

This article was processed using the IXTEX macro package with LLNCS style

