Skip to main content

Towards a harmonic blending of deterministic and stochastic frameworks in information processing

  • Part I Identification For Robust Control
  • Conference paper
  • First Online:
Robustness in identification and control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 245))

Abstract

This paper presents some preliminary efforts towards a new methodology which harmonically blends deterministic and stochastic frameworks in information processing, including identification, signal processing, communications, system design, etc. We begin with a discussion on distinctive features of the two frameworks and explanation of compelling reasons and motivating issues for introducing such a combined framework. Using persistent identification as an example, we demonstrate the application and utility of the methodology. Lower and upper bounds on identification errors are obtained for systems subject to both deterministic unmodelled dynamics and random external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike, Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika 60 (1973), 407–419.

    Article  MathSciNet  Google Scholar 

  2. K. Aström and B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.

    Google Scholar 

  3. P. Billingsley, Convergence of Probability Measures, J. Wiley, New York, 1968.

    MATH  Google Scholar 

  4. R.L. Burden and J.D. Faires, Numerical Analysis, 5th Ed., PWS Publ. Co., Boston, 1993.

    MATH  Google Scholar 

  5. P. E. Caines, Linear Stochastic Systems, Wiley, New York, 1988.

    MATH  Google Scholar 

  6. H.-F. Chen and L. Guo, Identification and Stochastic Adaptive Control, Birkhäuser, Boston, 1991.

    Book  MATH  Google Scholar 

  7. J. Chen, C.N. Nett, and M.K.H. Fan, Optimal non-parametric system identification from arbitrary corrupt finite time series, IEEE Trans. Automatic Control, AC-40 (1995), 769–776.

    Article  MathSciNet  Google Scholar 

  8. H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1946.

    MATH  Google Scholar 

  9. M.A. Dahleh, T. Theodosopoulos, and J.N. Tsitsiklis, The sample complexity of worst-case identification of FIR linear systems, System Control Lett. 20 (1993).

    Google Scholar 

  10. S. N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.

    MATH  Google Scholar 

  11. W. Feller, An Introduction to Probability Theory and Its Applications Volume I, 3rd Ed., Wiley, New York, 1968.

    Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and Its Applications Volume II, Wiley, New York, 1966.

    Google Scholar 

  13. J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1977), 24–39.

    Article  MATH  Google Scholar 

  14. G. Gu and P. P. Khargonekar, Linear and nonlinear algorithms for identification in H with error bounds, IEEE Trans. Automat. Control, AC-37 (1992), 953–963.

    Article  MathSciNet  Google Scholar 

  15. R.G. Kakvoort and P.M.J. Van den Hof, Consistent parameterized model sets, Automatica, Vol. 31, pp. 957–969, 1995.

    Article  Google Scholar 

  16. R. Z. Hasminskii and I. A. Ibragimov, On density estimation in the view of Kolmogorov's ideas in approximation theory, Ann. Statist. 18 (1990), 999–1010.

    MathSciNet  Google Scholar 

  17. I. A. Ibragimov and R. Z. Hasminskii, Statistical Estimation, Asymptotic Theory, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  18. A. N. Kolmogorov, On some asymptotic characteristics of completely bounded spaces, Dokl. Akad. Nauk SSSR, 108 (1956), 385–389.

    MATH  MathSciNet  Google Scholar 

  19. P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1986.

    MATH  Google Scholar 

  20. H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  21. L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.

    MATH  Google Scholar 

  22. P.M. Mäkilä, “Robust identification and Galois sequences,” Int. J. Contr., Vol. 54, No. 5, pp. 1189–1200, 1991.

    Article  MATH  Google Scholar 

  23. M. Milanes and G. Belforte, Estimation theory and uncertainty intervals evaluation in the presence of unknown but bounded errors: Linear families of models and estimators, IEEE Trans. Automat. Control AC-27 (1982), 408–414.

    Article  Google Scholar 

  24. M. Milanese and A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, 27 (1991), 997–1009.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, J. Wiley, New York, 1982.

    MATH  Google Scholar 

  26. F. Paganini, A set-based approach for white noise modeling, IEEE Trans. Automat. Control AC-41 (1996), 1453–1465.

    Article  MathSciNet  Google Scholar 

  27. A. Pinkus, n-widths in approximation theory, Springer-Verlag, 1985.

    Google Scholar 

  28. R. J. Serfling, Approximation Theorems of Mathematical Statistics, J. Wiley & Son, New York, 1980.

    MATH  Google Scholar 

  29. K. Poolla and A. Tikku, On the time complexity of worst-case system identification, IEEE Trans. Automat. Control, AC-39 (1994), 944–950.

    Article  MathSciNet  Google Scholar 

  30. J. Rissanen, Estimation of structure by minimum description length, Workshop Ration. Approx. Syst., Catholic University, Louvain, France.

    Google Scholar 

  31. R. Shibata, Asymptotically efficient selection of the order of the model for estimating parameters of a linear process, Ann. Statist. 8 (1980), 147–164.

    MATH  MathSciNet  Google Scholar 

  32. R. Shibata, An optimal autoregressive spectral estimate, Ann. Statist. 9 (1981), 300–306.

    MATH  MathSciNet  Google Scholar 

  33. V. Solo and X. Kong, Adaptive Signal Processing Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

  34. J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Information-Based Complexity, Academic Press, New York, 1988.

    MATH  Google Scholar 

  35. D.C.N. Tse, M. A. Dahleh and J.N. Tsitsiklis, Optimal asymptotic identification under bounded disturbances, IEEE Trans. Auto. Control, AC-38 (1993), 1176–1190.

    Article  MathSciNet  Google Scholar 

  36. S.R. Venkatesh and M.A. Dahleh, Identification in the presence of classes of unmodeled dynamics and noise, IEEE Trans. Automat. Control AC-42 (1997), 1620–1635.

    Article  MathSciNet  Google Scholar 

  37. L. Y. Wang, Persistent identification of time varying systems, IEEE Trans. Automat. Control, AC-42 (1997), 66–82.

    Article  Google Scholar 

  38. L.Y. Wang and J. Chen, Persistent identification of unstable LTV systems, Proc. 1997 CDC Conference, San Diego, 1997.

    Google Scholar 

  39. L. Y. Wang and L. Lin, Persistent identification and adaptation: Stabilization of slowly varying systems in H , IEEE Trans. Automat. Control, Vol. 43, No. 9, pp. 1211–1228, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  40. L.Y. Wang and G. Yin, Persistent identification of systems with unmodelled dynamics and exogenous disturbances, preprint, 1998.

    Google Scholar 

  41. G. Yin, A stopping rule for least-squares identification, IEEE Trans. Automat. Control, AC-34 (1989), 659–662.

    Article  Google Scholar 

  42. G. Zames, On the metric complexity of causal linear systems: ε-entropy and ε-dimension for continuous time, IEEE Trans. Automat. Control, AC-24 (1979), 222–230.

    Article  MathSciNet  Google Scholar 

  43. G. Zames, L. Lin and L.Y. Wang, Fast identification n-widths and uncertainty principles for LTI and slowly varying systems, IEEE Trans. Automat. Control, AC-39 (1994), 1827–1838.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Garulli (Assistant Professor)A. Tesi (Assistant Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Le Wang, Y., Yin, G. (1999). Towards a harmonic blending of deterministic and stochastic frameworks in information processing. In: Garulli, A., Tesi, A. (eds) Robustness in identification and control. Lecture Notes in Control and Information Sciences, vol 245. Springer, London. https://doi.org/10.1007/BFb0109863

Download citation

  • DOI: https://doi.org/10.1007/BFb0109863

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-179-5

  • Online ISBN: 978-1-84628-538-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics