Abstract
This paper presents some preliminary efforts towards a new methodology which harmonically blends deterministic and stochastic frameworks in information processing, including identification, signal processing, communications, system design, etc. We begin with a discussion on distinctive features of the two frameworks and explanation of compelling reasons and motivating issues for introducing such a combined framework. Using persistent identification as an example, we demonstrate the application and utility of the methodology. Lower and upper bounds on identification errors are obtained for systems subject to both deterministic unmodelled dynamics and random external disturbances.
Preview
Unable to display preview. Download preview PDF.
References
H. Akaike, Maximum likelihood identification of Gaussian autoregressive moving average models, Biometrika 60 (1973), 407–419.
K. Aström and B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.
P. Billingsley, Convergence of Probability Measures, J. Wiley, New York, 1968.
R.L. Burden and J.D. Faires, Numerical Analysis, 5th Ed., PWS Publ. Co., Boston, 1993.
P. E. Caines, Linear Stochastic Systems, Wiley, New York, 1988.
H.-F. Chen and L. Guo, Identification and Stochastic Adaptive Control, Birkhäuser, Boston, 1991.
J. Chen, C.N. Nett, and M.K.H. Fan, Optimal non-parametric system identification from arbitrary corrupt finite time series, IEEE Trans. Automatic Control, AC-40 (1995), 769–776.
H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1946.
M.A. Dahleh, T. Theodosopoulos, and J.N. Tsitsiklis, The sample complexity of worst-case identification of FIR linear systems, System Control Lett. 20 (1993).
S. N. Ethier and T.G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, New York, 1986.
W. Feller, An Introduction to Probability Theory and Its Applications Volume I, 3rd Ed., Wiley, New York, 1968.
W. Feller, An Introduction to Probability Theory and Its Applications Volume II, Wiley, New York, 1966.
J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1977), 24–39.
G. Gu and P. P. Khargonekar, Linear and nonlinear algorithms for identification in H ∞ with error bounds, IEEE Trans. Automat. Control, AC-37 (1992), 953–963.
R.G. Kakvoort and P.M.J. Van den Hof, Consistent parameterized model sets, Automatica, Vol. 31, pp. 957–969, 1995.
R. Z. Hasminskii and I. A. Ibragimov, On density estimation in the view of Kolmogorov's ideas in approximation theory, Ann. Statist. 18 (1990), 999–1010.
I. A. Ibragimov and R. Z. Hasminskii, Statistical Estimation, Asymptotic Theory, Springer-Verlag, New York, 1981.
A. N. Kolmogorov, On some asymptotic characteristics of completely bounded spaces, Dokl. Akad. Nauk SSSR, 108 (1956), 385–389.
P. R. Kumar and P. Varaiya, Stochastic Systems: Estimation, Identification and Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1986.
H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-Verlag, New York, 1997.
L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.
P.M. Mäkilä, “Robust identification and Galois sequences,” Int. J. Contr., Vol. 54, No. 5, pp. 1189–1200, 1991.
M. Milanes and G. Belforte, Estimation theory and uncertainty intervals evaluation in the presence of unknown but bounded errors: Linear families of models and estimators, IEEE Trans. Automat. Control AC-27 (1982), 408–414.
M. Milanese and A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, 27 (1991), 997–1009.
D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, J. Wiley, New York, 1982.
F. Paganini, A set-based approach for white noise modeling, IEEE Trans. Automat. Control AC-41 (1996), 1453–1465.
A. Pinkus, n-widths in approximation theory, Springer-Verlag, 1985.
R. J. Serfling, Approximation Theorems of Mathematical Statistics, J. Wiley & Son, New York, 1980.
K. Poolla and A. Tikku, On the time complexity of worst-case system identification, IEEE Trans. Automat. Control, AC-39 (1994), 944–950.
J. Rissanen, Estimation of structure by minimum description length, Workshop Ration. Approx. Syst., Catholic University, Louvain, France.
R. Shibata, Asymptotically efficient selection of the order of the model for estimating parameters of a linear process, Ann. Statist. 8 (1980), 147–164.
R. Shibata, An optimal autoregressive spectral estimate, Ann. Statist. 9 (1981), 300–306.
V. Solo and X. Kong, Adaptive Signal Processing Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1995.
J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Information-Based Complexity, Academic Press, New York, 1988.
D.C.N. Tse, M. A. Dahleh and J.N. Tsitsiklis, Optimal asymptotic identification under bounded disturbances, IEEE Trans. Auto. Control, AC-38 (1993), 1176–1190.
S.R. Venkatesh and M.A. Dahleh, Identification in the presence of classes of unmodeled dynamics and noise, IEEE Trans. Automat. Control AC-42 (1997), 1620–1635.
L. Y. Wang, Persistent identification of time varying systems, IEEE Trans. Automat. Control, AC-42 (1997), 66–82.
L.Y. Wang and J. Chen, Persistent identification of unstable LTV systems, Proc. 1997 CDC Conference, San Diego, 1997.
L. Y. Wang and L. Lin, Persistent identification and adaptation: Stabilization of slowly varying systems in H ∞, IEEE Trans. Automat. Control, Vol. 43, No. 9, pp. 1211–1228, 1998.
L.Y. Wang and G. Yin, Persistent identification of systems with unmodelled dynamics and exogenous disturbances, preprint, 1998.
G. Yin, A stopping rule for least-squares identification, IEEE Trans. Automat. Control, AC-34 (1989), 659–662.
G. Zames, On the metric complexity of causal linear systems: ε-entropy and ε-dimension for continuous time, IEEE Trans. Automat. Control, AC-24 (1979), 222–230.
G. Zames, L. Lin and L.Y. Wang, Fast identification n-widths and uncertainty principles for LTI and slowly varying systems, IEEE Trans. Automat. Control, AC-39 (1994), 1827–1838.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1999 Springer-Verlag London Limited
About this paper
Cite this paper
Le Wang, Y., Yin, G. (1999). Towards a harmonic blending of deterministic and stochastic frameworks in information processing. In: Garulli, A., Tesi, A. (eds) Robustness in identification and control. Lecture Notes in Control and Information Sciences, vol 245. Springer, London. https://doi.org/10.1007/BFb0109863
Download citation
DOI: https://doi.org/10.1007/BFb0109863
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-85233-179-5
Online ISBN: 978-1-84628-538-7
eBook Packages: Springer Book Archive