Skip to main content

Robustness and performance in adaptive filtering

  • Part I Identification For Robust Control
  • Conference paper
  • First Online:
Robustness in identification and control

Abstract

Adaptive filtering of a scalar signal corrupted by noise is considered. In particular, the signal to be estimated is modeled as a linear regression depending on a drifting parameter. The mean-square and worst-case performances of the Normalized Least Mean Squares, Kalman, and central H -filters are studied. The analysis shows that a compromise between performance and robustness should be pursued, for instance by applying the central H -filter with the design parameter γ used as a tuning knob.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åström, K.J. (1980) Design principles for self-tuning regulators. In Methods and Applications in Adaptive Control, U. Unbenhauen Ed., Springer, Berlin, 1–20.

    Chapter  Google Scholar 

  2. Bernstein, D.S., Haddad, W.M. (1989) Steady-state Kalman filtering with an H error bound. Systems and Control Letters, 12, 9–16.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bolzern, P., Colaneri, P., De Nicolao, G. (1997) Robustness in adaptive filtering: how much is enough? Proc. 36th Conf. on Decision and Control, San Diego, USA, 4677–4679.

    Google Scholar 

  4. Bolzern, P., Colaneri, P., De Nicolao, G. (1999) H robustness of adaptive filters against measurement noise and parameter drift. To appear in Automatica.

    Google Scholar 

  5. Bolzern, P., Colaneri, P., De Nicolao, G. (1999) Tradeoff between mean-square and worst-case performances in adaptive filtering. Submitted to European J. Control.

    Google Scholar 

  6. Bolzern, P., Colaneri, P., De Nicolao, G. (1999) γ-recalibration of a class of H -filters. IEEE American Control Conference, San Diego, USA.

    Google Scholar 

  7. Colaneri, P., Geromel, J.C., Locatelli, A. (1997) Control Theory and Design — An RH 2 and RH viewpoint. Academic Press, San Diego, USA.

    Google Scholar 

  8. Didinsky, G., Pan, Z., Basar, T. (1995) Parameter identification for uncertain plants using H methods. Automatica, 31, N.9, 1227–1250.

    Article  MATH  MathSciNet  Google Scholar 

  9. Grimble, M.J., Hashim, R., Shaked, U. (1992) Identification algorithms based on H state-space filtering techniques. Proc. 31st Conference on Decision and Control, Tucson, USA, 2287–2292.

    Google Scholar 

  10. Guo, L., Ljung, L. (1995) Performance analysis of general tracking algorithms, IEEE Trans. Automatic Control, AC-40, N.8, 1388–1402.

    MathSciNet  Google Scholar 

  11. Guo, L., Xia, L., Moore, J.B. (1991) Tracking randomly varying parameters — Analysis of a standard algorithm. Mathematics of Control, Signal and Systems, 4, N.1, 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hassibi, B. (1996) Indefinite metric spaces in estimation, control and adaptive filtering. PhD Thesis, Stanford University.

    Google Scholar 

  13. Hassibi, B., Sayed, A.H., Kailath, T. (1996) H optimality of the LMS algorithm. IEEE Trans. Signal Processing, AC-44, 267–280.

    Article  Google Scholar 

  14. Hassibi, B., Sayed, A.H., Kailath, T. (1996) Linear estimation in Krein spaces — Part II: Applications. IEEE Trans. Automatic Control, AC-41, N.1, 34–49.

    Article  MathSciNet  Google Scholar 

  15. Kulhavy, R., Karny, M. (1984) Tracking of slowly varying parameters by directional forgetting. Proc. 9 th Triennal IFAC World Congress, Budapest, Hungary, 79–83.

    Google Scholar 

  16. Ljung, L., Gunnarsson, S. (1990) Adaptation and tracking in system identification — a survey. Automatica, 26, N.1, 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  17. Nagpal, K.M., Khargonekar, P.P. (1991) Filtering and smoothing in an H setting. IEEE Trans. Automatic Control, AC-36, N.2, 152–166.

    Article  MathSciNet  Google Scholar 

  18. Rupp, M., Sayed, A.H. (1996) A time-domain feedback analysis of filtered-error adaptive gradient algorithms. IEEE Trans. Signal Processing, AC-44, N.6, 1428–1439.

    Article  Google Scholar 

  19. Sayed, A.H., Kailath, T. (1994) A state-space approach to adaptive RLS filtering. IEEE Signal Processing Magazine, 11, 18–60.

    Article  Google Scholar 

  20. Sayed, A.H., Rupp, M. (1997) An l 2-stable feedback structure for nonlinear adaptive filtering and identification. Automatica, 33, N.1, 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  21. Theodor, Y., Shaked, U., Berman, N. (1996) Time-domain H identification. IEEE Trans. Automatic Control, AC-41, 1019–1024.

    Article  MathSciNet  Google Scholar 

  22. Yaesh, I., Shaked, U. (1991) H -optimal estimation — the discrete-time case. Proc. Symp. MTNS, Kobe, Japan, 261–267.

    Google Scholar 

  23. Yaesh, I., Shaked, U. (1991) A transfer function approach to the problems of discrete-time systems: H -optimal linear control and filtering. IEEE Trans. Automatic Control, AC-36, N.11, 1264–1271.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Garulli (Assistant Professor)A. Tesi (Assistant Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Bolzern, P., Colaneri, P., De Nicolao, G. (1999). Robustness and performance in adaptive filtering. In: Garulli, A., Tesi, A. (eds) Robustness in identification and control. Lecture Notes in Control and Information Sciences, vol 245. Springer, London. https://doi.org/10.1007/BFb0109868

Download citation

  • DOI: https://doi.org/10.1007/BFb0109868

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-179-5

  • Online ISBN: 978-1-84628-538-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics