Skip to main content

On deductive planning and the frame problem

  • Session 2: Non-Resolution Theorem Proving I
  • Conference paper
  • First Online:
Logic Programming and Automated Reasoning (LPAR 1992)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 624))

Abstract

We review some logic formalisms which were designed in order to reason about situations, goals, and actions. In particular, we focuss on the so-called frame problem, ie. the technical problem of how to formalize the assumption that unless an action explicitly causes a certain fact to hold or not to hold, the facts are preserved by the action. It is shown that there is no need to explicitly state frame axioms, ie. axioms which deal with the frame problem, if the logic formalism treats facts as resources which are produced and consumed. The linear connection method, the linear logic as well as a particular equational logic are such formalisms. Moreover, we demonstrate that these three formalisms are equivalent for a large class of planning problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. New Generation Computing, 9(3+4), 1991.

    Google Scholar 

  2. W. Bibel. A deductive solution for plan generation. New Generation Computing, 4:115–132, 1986.

    Google Scholar 

  3. W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, second edition, 1987.

    Google Scholar 

  4. W. Bibel. A deductive solution for plan generation. In J. W. Schmidt and C. Thanos, editors, Foundations of Knowledge Base Management, pages 453–473. Springer, 1989. XII.

    Google Scholar 

  5. W. Bibel. Intellectics. In S. C. Shapiro, editor, Encyclopedia of Artificial Intelligence, pages 705–706. John Wiley, New York, 1992.

    Google Scholar 

  6. W. Bibel, L. F. del Cerro, B. Fronhöfer, and A. Herzig. Plan generation by linear proofs: on semantics. In Proceedings of the German Workshop on Artificial Intelligence, pages 49–62. Springer Informatik Fachberichte 216, 1989.

    Google Scholar 

  7. F. M. Brown. The Frame Problem in Artificial Intelligence: Proceedings of the 1987 Workshop. Morgan Kaufmann Publishers, Inc., 1987.

    Google Scholar 

  8. J. H. Gallier. Logic for Computer Science: Foundations of Automated Theorem Proving. Harper and Row, New York, 1986.

    Google Scholar 

  9. J. Y. Girard. Linear logic. Journal of Theoretical Computer Science, 50(1):1–102, 1987.

    Article  Google Scholar 

  10. C. Green. Application of theorem proving to problem solving. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 219–239. Morgan Kaufmann, 1969.

    Google Scholar 

  11. G. Grosse, S. Hölldobler, and J. Schneeberger. On linear deductive planning. Internal Report, Technische Hochschule Darmstadt, Fachbereich Informatik, 1992.

    Google Scholar 

  12. G. Grosse, S. Hölldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Equational logic programming, actions, and change. Internal Report, Technische Hochschule Darmstadt, Fachbereich Informatik, (submitted).

    Google Scholar 

  13. G. Große and R. Waldinger. Towards a theory of simultaneous actions. In J. Hertzberg, editor, Proceedings of the European Workshop on Planning, pages 78–87. Springer, LNCS 522, 1991.

    Google Scholar 

  14. S. Hanks and D. McDermott. Default reasoning, nonmonotonic logics, and the frame problem. In Proceedings of the AAAI National Conference on Artificial Intelligence, pages 328–333, 1986.

    Google Scholar 

  15. P. J. Hayes. The frame problem and related problems in artificial intelligence. In A. Elithorn and D. Jones, editors, Artificial and Human Thinking, pages 45–49. Jossey-Bass, San Francisco, 1973.

    Google Scholar 

  16. S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Computer Science. Springer, 1989.

    Google Scholar 

  17. S. Hölldobler and J. Schneeberger. A new deductive approach to planning. New Generation Computing, 8:225–244, 1990. A short version appeared in the Proceedings of the German Workshop on Artificial Intelligence, Informatik Fachberichte 216, pages 63–73, 1989.

    Google Scholar 

  18. R. Kowalski. Logic for Problem Solving, volume 7 of Artificial Intelligence. North Holland, New York/Oxford, 1979.

    Google Scholar 

  19. V. Lifschitz. Formal theories of action. In Proceedings of the International Joint Conference on Artificial Intelligence, pages 966–972. Morgan Kaufmann Publishers, Inc., 1987.

    Google Scholar 

  20. V. Lifschitz. Frames in the space of situations. Artificial Intelligence, 46:365–376, 1990.

    Article  Google Scholar 

  21. M. Masseron, C. Tollu, and J. Vausielles. Generating plans in linear logic. In Proceedings of the 10th FST-TCS. Springer, LNCS 472, 1990.

    Google Scholar 

  22. J. McCarthy. Towards a mathematical science of computation. In Proceedings of the IFIP Congress, pages 21–28, 1962.

    Google Scholar 

  23. J. McCarthy. Situations and actions and causal laws. Stanford Artificial Intelligence Project: Memo 2, 1963.

    Google Scholar 

  24. J. McCarthy. Applications of circumscription to formalizing common-sense knowledge. Artificial Intelligence, 28:89–116, 1986.

    Article  Google Scholar 

  25. J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, 1990.

    Article  Google Scholar 

  26. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.

    Google Scholar 

  27. G.D. Plotkin. Building-in equational theories. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages 73–90. 1972.

    Google Scholar 

  28. R. Reiter. On formalizing database updates: Preliminary report. In Proceedings of the 3rd International Conference on Extending Database Technology, 1992.

    Google Scholar 

  29. J. A. Robinson. A review on automatic theorem proving. In Annual Symposia in Aplied Mathematics XIX, pages 1–18. American Mathematical Society, 1967.

    Google Scholar 

  30. J. Schneeberger. Plan Generation by Linear Deduction. PhD thesis, Technische Hochschule Darmstadt, Fachbereich Informatik, 1992.

    Google Scholar 

  31. Ute Sigmund. LLP — Lineare Logische Programmierung. Diplomarbeit, Technische Hochschule Darmstadt, Fachbereich Informatik, 1992. (in preparation).

    Google Scholar 

  32. M. Thielscher. AC1-Unifikation in der linearen logischen Programmierung. Diplomarbeit, Technische Hochschule Darmstadt, Fachbereich Informatik, 1992. (in preparation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hölldobler, S. (1992). On deductive planning and the frame problem. In: Voronkov, A. (eds) Logic Programming and Automated Reasoning. LPAR 1992. Lecture Notes in Computer Science, vol 624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0013045

Download citation

  • DOI: https://doi.org/10.1007/BFb0013045

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55727-2

  • Online ISBN: 978-3-540-47279-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics