Skip to main content

The application of evolutionary computation to selected problems in molecular biology

  • Evolutionary Methods for Modeling and Training
  • Conference paper
  • First Online:
Evolutionary Programming VI (EP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1213))

Included in the following conference series:

Abstract

Molecular biologists are currently faced with an array of computationally complex optimization problems. Over the past six years, evolutionary computation has been demonstrated to be useful for some of these problems, in particular RNA and protein structure prediction. This survey will focus on applications of evolutionary programming and genetic algorithms. Future applications of evolutionary computation in the medical and molecular sciences are suggested. The problems faced in computer-aided molecular design represent a challenging new testing ground for algorithms incorporating the evolutionary process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fogel, D.B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press. New York. 1995.

    Google Scholar 

  2. L. Hunter. Artificial Intelligence and Molecular Biology. AAAI Press, Menlo Park, 1993.

    Google Scholar 

  3. Rawlings, C.J. and Fox, J.P. 1994 Artificial intelligence in molecular biology: a review and assessment. Phil. Trans. R. Soc. Lond. B 344:353–363.

    Google Scholar 

  4. Clark, D.A. and Rawlings, C.J. 1994. Intelligent systems for molecular biology: review of the first international conference. CABIOS. 10(2):199–205.

    PubMed  Google Scholar 

  5. Böhm, G. 1996. New approaches in molecular structure prediction. Biophys. Chem. 59:1–32.

    Article  PubMed  Google Scholar 

  6. Brandon, C. and Tooze, J. Introduction to Protein Structure. Garland Pub. Inc., New York. 1991.

    Google Scholar 

  7. Lewin, B. Genes V. Oxford Univ. Press, New York, 1993.

    Google Scholar 

  8. Unger, R. and Moult, J. 1993. Finding the lowest free energy conformation of a protein is a NP-hard problem: proof and implications. Bull Math. Biol. 55:1183.

    Article  PubMed  Google Scholar 

  9. Leopold, P.E., Montal, M. and Onuchic, J.N. 1992. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. USA 89:8721–8725.

    PubMed  Google Scholar 

  10. Zuker, M. and Stiegler, P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nuc. Acids Res. 9:133–148.

    Google Scholar 

  11. Stern, S; Powers, T; Changchien, L-M; Noller, H. F. 1989 RNA-protein interactions in 30S ribosomal subunits folding and function of 16S ribosomal RNA. Science. 244(4906):783–790.

    PubMed  Google Scholar 

  12. Zuker, M. 1989. On finding all suboptimal foldings of an RNA molecule. Science 244(4900):48–52.

    PubMed  Google Scholar 

  13. Papanicolau, C., Gouy, M. and Ninio, J. 1984. An energy model which predicts the correct folding of both the tRNA and the 5S RNA sequences. Nucleic Acids Research. 12, 31–44.

    PubMed  Google Scholar 

  14. Van Batenburg, F.H.D., Gultyaev, A.P. and Pleij, C.W.A. 1995. An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. theor. Biol. 174, 269–280.

    Article  PubMed  Google Scholar 

  15. Nussinov, R. and Tinoco, I. 1981. Sequential folding of a messenger RNA molecule. J. molec. Biol. 151:519–533.

    Article  PubMed  Google Scholar 

  16. Gultyaev, A.P., van Batenburg, F.H.D. and Pleij, C.W.A. 1995 The computer simulation of RNA folding pathways using a genetic algorithm. J. molec. Biol. 250:37–51.

    Article  PubMed  Google Scholar 

  17. Shapiro, B. and Wu, J.C. 1996. An annealing mutation operator in the genetic algorithms for RNA folding. CABIOS. 12(3):171–180.

    PubMed  Google Scholar 

  18. Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P. 1983. On minimization by simulated annealing. Science. 220:671–675.

    Google Scholar 

  19. Shapiro, B.A. and Navetta, J. 1994. A massively parallel genetic algorithm for RNA secondary structure prediction. J. Supercomput. 8, 195–207.

    Article  Google Scholar 

  20. Bäck, T., Rudolph, G., and Schwefel, H.-P. 1993. “Evolutionary programming and evolution strategies: similarities and differences.” in Proc. of the Second Ann. Conf. on Evolutionary Programming, edited by D.B. Fogel and W. Atmar. La Jolla, CA: Evolutionary Programming Society, pp. 11–22.

    Google Scholar 

  21. Fogel, D.B., Fogel, L.J., Atmar, W., and Fogel, G.B. 1992. “Hierarchic methods of evolutionary programming.” In Proc. of the First Ann. Conf. on Evolutionary Programming, edited by D.B. Fogel and W. Atmar. La Jolla, CA: Evolutionary Programming Society, pp. 872–878.

    Google Scholar 

  22. Benedetti, G. and Morosetti, S. 1995. A genetic algorithm to search for optimal and suboptimal RNA secondary structures. Biophys. Chem. 55:253–259.

    Article  PubMed  Google Scholar 

  23. Ogata, H., Akiyama, Y. and Kanehisa, M. 1995. A genetic algorithm based molecular modeling technique for RNA stem-loop structures. Nuc. Acids Res. 23(3):419–426.

    Google Scholar 

  24. Lodish, H., Baltimore, D., Berk, A., Zipursky, S.L., Matsudaira, P., Darnell, J. Molecular Cell Biology. W.H. Freeman and Co., New York, 1995.

    Google Scholar 

  25. Fasman, G.D. 1989. In Fasman, G.D. (ed.), Prediction of Protein Structure and the Principles of Protein Conformation. Plenum Press, New York, pp. 193–301.

    Google Scholar 

  26. Lesk, A.M. and Boswell, D.R. 1992. It's deja vu all over again. Current Biology. 2(9):491–493.

    Article  PubMed  Google Scholar 

  27. Merz, K.M. and Le Grand, S.M. 1994. The Protein Folding Problem and Tertiary Structure Prediction. Brikhäuser, Boston, MA.

    Google Scholar 

  28. Bowie, J.U., Lüthy, R., and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 253:164–170.

    PubMed  Google Scholar 

  29. Jones, D.T., Taylor, W.T. and Thornton, J.M. 1992. A new approach to protein fold recognition. Nature. 358:86–89.

    Article  PubMed  Google Scholar 

  30. Schulze-Kremer, S. “Genetic algorithms for protein tertiary structure prediction” in Parallel Problem Solving from Nature, 2 (R. Manner and B. Manderick (eds.), Elsevier Science Pub. 1992.

    Google Scholar 

  31. Unger, R. and Moult, J. 1992. Genetic algorithms for protein folding simulations. J. Mol. Biol. 231:75–81.

    Article  Google Scholar 

  32. Dandekar, T. and Argos, P. 1992. Potential of genetic algorithms in protein folding and protein engineering simulations. Protein Engineering. 5(7):637–645.

    PubMed  Google Scholar 

  33. Fogel, D.B. 1994. Asymptotic convergence properties of genetic algorithms and evolutionary programming: analysis and experiments. Cybernetics and Systems. 25(3):389–407.

    Google Scholar 

  34. Fogel, G.B. 1993. “An introduction to the protein folding problem and potential application of the evolutionary programming” in Proc. of the Second Conference on Evolutionary Programming, edited by D.B. Fogel and W. Atmar. La Jolla, CA: Evolutionary Programming Society, pp. 170–177.

    Google Scholar 

  35. Bowie, J.U. and Eisenberg, D. 1994. An evolutionary approach to folding small α-helical proteins that uses sequence information and an empirical guiding fitness function. Proc. Natl. Acad. Sci. USA, 91:4436–4440.

    PubMed  Google Scholar 

  36. Eisenberg, D., Bowie, J.U., Lüthy, R., Wilmanns, M., Wesson, L., Zhang, K., Elofssen, A. and Le Grand, S. “Determining protein folds by inverted and evolutionary protein folding algorithms” in Searching Sequence Space: Rational and Random Approaches to Sequence Design. Santa Fe Institute, April 30–May 1, 1994.

    Google Scholar 

  37. Sun, S. 1993. Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Science. 2:765–785.

    Google Scholar 

  38. Wilson, C. and Doniach, S. 1989. A computer model to dynamically simulate protein folding: studies with crambin. Proteins. Struct. Funct. Genet. 6, 193–209.

    Article  PubMed  Google Scholar 

  39. Sun, S., Luo, N. Ornstein, R. and Rein, R. 1992. Protein structure prediction based on statistical potential. Biophys. J. 62:104–106.

    PubMed  Google Scholar 

  40. Sun, S., Thomas, P. D., Dill, K. A. 1995. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Engineering. 8(8):769–778.

    PubMed  Google Scholar 

  41. Dandekar, T., Argos, P. 1996. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions. Jour. Mol. Biol. 256(3): 645–660.

    Article  Google Scholar 

  42. Notredame, C., and Higgins, D.G. 1996. SAGA — Sequence alignment by genetic algorithm. Nuc. Acids. Res. 24(18):1515–1524.

    Article  Google Scholar 

  43. Gunnels, J., Cull, P., and Holloway, J.L. 1994 “Genetic algorithms and simulated annealing for gene mapping” in Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Press.

    Google Scholar 

  44. Wehrens, R; Lucasius, C; Buydens, L; Kateman, G. 1993. HIPS: A hybrid self-adapting expert system for nuclear magnetic resonance spectrum interpretation using genetic algorithms. Anal. Chim. Acta. 277(2):313–324.

    Article  Google Scholar 

  45. Wehrens, R; Lucasius, C; Buydens, L; Kateman, G. 1993. Sequential assignment of 2D-NMR spectra of proteins using genetic algorithms. J. Chem. Infor. and Comp. Sci. 33(2):245–251.

    Article  Google Scholar 

  46. Pearlman, D.A.. 1996. FINGAR: A new genetic algorithm-based method for fitting NMR data. J. of Biomolec. NMR. 8(1):49–66.

    Google Scholar 

  47. Forrest, S., Javornik, B., Smith, R.E. and Perelson, A.S. 1993. Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation 1(3):191–211.

    Google Scholar 

  48. Bettenhausen, K.D., Marenback, P., Freyer, S., Rettenmaier, H., and Nieken, U. “Self-organizing structured modelling of a biotechnological fed-batch fermentation by means of genetic programming” in Genetic Algorithms in Engineering Systems: Innovations and Applications GALESIA. 1995.

    Google Scholar 

  49. Moraczewski, I.R.; Borkowski, W; Kierzek, A. 1995. Clustering geobotanical data with the use of a genetic algorithm. Coenoses, 10(1): 17–28.

    Google Scholar 

  50. Rogers, D.R. and Hopfinger, A.J. 1994. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Conput Sci. 34:854–866.

    Article  Google Scholar 

  51. Luke, BAT. Evolutionary programming applied to the development of quantitative structure-activity relationships and quantitative structure-property relationships. 1994. J. Chem. Inf. Comput. Sci. 34:1279–1287.

    Article  Google Scholar 

  52. So, S.-S. and Karplus, M. 1996. Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks. J. Med. Chem. 39:1521–1530.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter J. Angeline Robert G. Reynolds John R. McDonnell Russ Eberhart

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fogel, G.B. (1997). The application of evolutionary computation to selected problems in molecular biology. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds) Evolutionary Programming VI. EP 1997. Lecture Notes in Computer Science, vol 1213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0014798

Download citation

  • DOI: https://doi.org/10.1007/BFb0014798

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62788-3

  • Online ISBN: 978-3-540-68518-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics