Skip to main content

Secure distributed computing: Theory and practice

  • Conference paper
  • First Online:
Distributed Algorithms (WDAG 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 857))

Included in the following conference series:

  • 144 Accesses

Abstract

The general area of secure distributed computing and the interplay between distributed computing and security/ cryptography research is reviewed. Recent theoretical and practical developments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abadi, J. Feigenbaum, and J. Kilian, “On hiding information from an oracle,” J. Comput. System Sci. 39 (1989), 21–50.

    Article  Google Scholar 

  2. M. Abadi and J. Feigenbaum, “Secure circuit evaluation: a protocol based on hiding information from an oracle,” J. Cryptology 2 (1990), 1–12.

    Google Scholar 

  3. L. Adleman Abstract Theory of Computer Viruses CRYPTO 88.

    Google Scholar 

  4. L. Babai and S. Moran, “Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes,” J. Comput. System Sci. 36 (1988), 254–276.

    Article  Google Scholar 

  5. I. Barany and Z. Furedi, “Mental poker with three or more players,” Information and Control 59 (1983), 84–93.

    Article  Google Scholar 

  6. J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction,” PODC 1989, 201–209.

    Google Scholar 

  7. R. Bar-Yehuda, B. Chor, and E. Kushilevitz, “Privacy, additional information, and communication,” IEEE Structure in Complexity Theory 1990, 55–65.

    Google Scholar 

  8. D. Beaver, “Multiparty protocols tolerating half faulty processors,” in Crypto 89.

    Google Scholar 

  9. D. Beaver, “Perfect privacy for two-party protocols,” DIMACS Workshop on Distributed Computing and Cryptography, Feigenbaum and Merritt (eds.), AMS, 1990, 65–77.

    Google Scholar 

  10. D. Beaver, “Foundations of secure interactive computing,” in Crypto 91.

    Google Scholar 

  11. D. Beaver, “Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority,” J. Cryptology (1991) 4: 75–122.

    Article  Google Scholar 

  12. D. Beaver and J. Feigenbaum, “Hiding instances in multioracle queries,” STACS 1990, 37–48.

    Google Scholar 

  13. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, “Security with low communication overhead,” Crypto 90.

    Google Scholar 

  14. D. Beaver and S. Goldwasser, “Multiparty computation with faulty majority,” IEEE FOCS 1989, 468–473.

    Google Scholar 

  15. D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure protocols,” ACM STOC 1990, 503–513.

    Google Scholar 

  16. M. Bellare, L. Cowen, and S. Goldwasser, “On the structure of secret key exchange protocols,” DIMACS Workshop on Distributed Computing and Cryptography, Feigenbaum and Merritt (eds.), AMS, 1990, 79–92.

    Google Scholar 

  17. M. Bellare, P. Rogaway, “Entity authentication and key distribution”, Crypto 93.

    Google Scholar 

  18. S.M.Bellovin, M.Merritt, “Limitations of the Kerberos authentication system”, ACM Computer Communication Review 20 5 (Oct.90) 119–132.

    Google Scholar 

  19. J. Benaloh (Cohen), “Secret sharing homomorphisms: keeping shares of a secret secret,” Crypto 86.

    Google Scholar 

  20. J. Benaloh and D. Tuinstra, “Receipt-Free Secret-Ballot Election” ACM STOC 1994, 544–553.

    Google Scholar 

  21. J. Benaloh (Cohen) and M. Yung, “Distributing the power of a government to enhance to privacy of voters,” PODC 1986, 52–62.

    Google Scholar 

  22. M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” ACM STOC 1993, 52–61.

    Google Scholar 

  23. M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure computation with optimal resilience,” ACM PODC 94.

    Google Scholar 

  24. M. Ben-Or and R. Cleve, “Computing algebraic formulas using a constant number of registers,” ACM STOC 1988, 254–257.

    Google Scholar 

  25. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest, “A fair protocol for signing contracts”, ICALP 1985, Springer-Verlag LNCS 194, 43–52.

    Google Scholar 

  26. M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for noncryptographic fault-tolerant distributed computation,” ACM STOC 1988, 1–9.

    Google Scholar 

  27. R. Berger, R. Peralta, and T. Tedrick, “A provably secure oblivious transfer protocol,” Eurocrypt 1984, 379–386.

    Google Scholar 

  28. E. Berlekamp, Algebraic Coding Theory, Aegean Park Press, Laguna Hills, CA, 1984.

    Google Scholar 

  29. D. Bienstock and P. Seymour, “Monotonicity in graph searching,” J. Algorithms 12 (1991), 230–245.

    Article  Google Scholar 

  30. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, “Systematic design of two-party authentication protocols,” Crypto 91.

    Google Scholar 

  31. M. Blom, “An optimal class of key generation systems”, Eurocrypt 84, LNCS 209, Springer Verlag, 1984, 335–338.

    Google Scholar 

  32. M. Blum, “Three applications of the Oblivious Transfer: University of California, Berkeley, CA, 1981.

    Google Scholar 

  33. M. Blum, “Coin flipping by telephone: a protocol for solving impossible problems,” IEEE Computer Conference 1982, 133–137.

    Google Scholar 

  34. M. Blum, “How to exchange (secret) keys,” ACM Trans. Comput. Sys. 1 (1983), 175–193.

    Article  Google Scholar 

  35. M. Blum, “How to prove a theorem so no one else can claim it,” Proc. of the International Congress of Mathematicians, Berkeley, CA, 1986, 1444–1451.

    Google Scholar 

  36. M. Blum and S. Micali, “How to generate cryptographically strong sequences of pseudo random bits”, SIAM J. Comput. 13 (1984), 850–864.

    Article  Google Scholar 

  37. M. Blum, U. Vazirani, and V. Vazirani, “Reducibility among protocols,” Crypto 83. Plenum Press, 1984.

    Google Scholar 

  38. C. Blundo, A. DeSantis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, “Perfectly-secure key distribution for dynamic conferences” Crypto 92.

    Google Scholar 

  39. S. Brands, “Electronic cash systems based on the representation problem in groups of prime order,” Crypto 93.

    Google Scholar 

  40. G. Brassard, D. Chaum, and C. Crépeau, “Minimum disclosure proofs of knowledge,” J. Comput. System Sci. 37 (1988).

    Google Scholar 

  41. G. Brassard, C. Crépeau, and J. Robert, “Information theoretic reductions among disclosure problems,” IEEE FOCS 1986, 168–173.

    Google Scholar 

  42. G. Brassard, C. Crépeau, and M. Yung, “Perfectly concealing computationally convincing interactive proofs in constant rounds,” Theoretical Computer Science.

    Google Scholar 

  43. R. Breisch, “An intuitive approach to speleo-topology,” Southwestern Cavers (published by the Southwestern Region of the National Speleological Society) 6 (1967), 72–78.

    Google Scholar 

  44. M. Burrows, M. Abadi, and R. Needham, “Authentication: A practical study in belief and action,” in Proc. Second Conference on Theoretical Aspects of Reasoning about Knowledge, Moshe Vardi (ed.), Morgan Kaufmann, 1988.

    Google Scholar 

  45. R. Canetti, and A. Herzberg, “Maintaining Security in the Presence of Transient Faults”, Crypto 94.

    Google Scholar 

  46. R. Canetti, and T. Rabin, “Fast Asynchronous Byzantine Agreement” ACM STOC 1993, 42–52.

    Google Scholar 

  47. R. M. Capocelli, A. De Santis, L. Gargano, abd U. Vaccaro, “On the Size of Shares for Secret Sharing Schemes”, J. of Cryptology, V. 6, N. 3, 157–169.

    Google Scholar 

  48. D. Chaum, “Untraceable electronic mail, return addresses and digital pseudonyms,” CACM 24 (1981), 84–88.

    Google Scholar 

  49. D. Chaum, “Security without identification: transaction systems to make big brother obsolete,” CACM 28, 10 (October 1985).

    Google Scholar 

  50. D. Chaum, “The spymasters double-agent problem: multiparty computations secure unconditionally from minorities and cryptographically from majorities,” Crypto 89.

    Google Scholar 

  51. D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally secure protocols,” ACM STOC 1988, 11–19.

    Google Scholar 

  52. D. Chaum, I. Damgård, and J. van de Graaf, “Multiparty computations ensuring privacy of each party's input and correctness of the result,” Crypto 87.

    Google Scholar 

  53. D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” Crypto 88.

    Google Scholar 

  54. D. Chaum and T. Pederson, “Wallet databases with observers,” Crypto 92.

    Google Scholar 

  55. B. Chor, M. Gereb-Graus, and E. Kushilevitz, “Private computations over the integers,” IEEE FOCS 1990, 335–344.

    Google Scholar 

  56. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving simultaneity in the presence of faults,” IEEE FOCS 1985, 383–395.

    Google Scholar 

  57. B. Chor and E. Kushilevitz, “A zero-one law for boolean privacy,” ACM STOC 1989, 62–72.

    Google Scholar 

  58. R. Cleve, “Limits on the security of coin flips when half the processors are faulty,” ACM STOC 1986, 364–369.

    Google Scholar 

  59. R. Cleve, “Controlled gradual disclosure schemes for random bits and their applications,” Crypto 89.

    Google Scholar 

  60. J. (Benaloh) Cohen and M. Fisher, “A robust and verifiable cryptographically secure election scheme,” IEEE FOCS 1985, 372–382.

    Google Scholar 

  61. G.R. Blakley, “Safeguarding Cryptographic Keys” AFIPS Conf. Proc. v. 48, 1979, 313–317.

    Google Scholar 

  62. F. Cohen, Computer Viruses, Ph.D. dissertation, UCS, 1986.

    Google Scholar 

  63. D. Coppersmith, “Cheating at mental poker,” Crypto 85.

    Google Scholar 

  64. C. Crépeau, “A secure poker protocol that minimizes the effect of player coalitions,” Crypto 85.

    Google Scholar 

  65. C. Crépeau, “A zero-knowledge poker protocol that achieves confidentiality of the players' strategy, or How to achieve an electronic poker face,” Crypto 86.

    Google Scholar 

  66. C. Crépeau, “Equivalence between two flavours of Oblivious Transfer,” Crypto 88.

    Google Scholar 

  67. C. Crépeau and J. Kilian, “Achieving oblivious transfer using weakened security assumptions,” IEEE FOCS 1988, 42–52.

    Google Scholar 

  68. A. DeSantis, Y. Desmedt, Y. Frankel, and M. Yung, “How to Share a Function Securely”, ACM STOC 1994, 522–533.

    Google Scholar 

  69. W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory, 22(6): 644–654, 1976.

    Article  Google Scholar 

  70. W. Diffie, P. Van Oorschot, M. Weiner, “Authentication and Authenticated Key Exchange” Designs, Codes and Cryptography, 2, 1992, 107–125.

    Google Scholar 

  71. E. W. Dijkstra, Self-Stabilizing Systems in spite of Distributed Control, CACM, 17, 1974, pp. 643–644.

    Google Scholar 

  72. D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure message transmission,” JACM 40 (1993), 17–47.

    Article  Google Scholar 

  73. D. Dolev and A. Yao, “On the security of public key protocols,” ACM FOCS 1981, 350–357.

    Google Scholar 

  74. S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,” CACM 28 (1985), 637–647.

    Google Scholar 

  75. S. Even, O. Goldreich, and Y. Yacobi, “Electronic Wallet,” Crypto 83.

    Google Scholar 

  76. U. Feige, A. Fiat, and A. Shamir, “Zero-Knowledge Proofs of Identity,” J. Cryptology 1 (1988) 77–94.

    Google Scholar 

  77. U. Feige, J. Kilian, and M. Naor, “A Minimal Model for Secure Computation”, ACM STOC 1994, 554–563.

    Google Scholar 

  78. P. Feldman and S. Micali, “Optimal algorithms for Byzantine agreement,” ACM STOC 1988, 148–161.

    Google Scholar 

  79. N. Ferguson, “Extensions of single-term coins,” Crypto 93.

    Google Scholar 

  80. A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature problems,” Crypto86.

    Google Scholar 

  81. S. Fortune and M. Merritt, “Poker protocols,” Crypto 84.

    Google Scholar 

  82. M. Franklin, “Complexity and security of distributed protocols”, Ph.D. thesis, Columbia University, 1993.

    Google Scholar 

  83. M. Franklin, Z. Galil, and M. Yung, “Eavesdropping games: A graph-theoretic approach to privacy in distributed systems,” IEEE FOCS 1993, 670–679.

    Google Scholar 

  84. M. Franklin and M. Yung, “Communication complexity of secure computation,” ACM STOC 1992, 699–710.

    Google Scholar 

  85. M. Franklin and M. Yung, “Secure and efficient off-line digital money,” ICALP 93.

    Google Scholar 

  86. M. Franklin and M. Yung, “Privacy from Partial Broadcast”, Technical Report, CWI, Amsterdam.

    Google Scholar 

  87. Z. Galil, S. Haber, and M. Yung, “Cryptographic computation: secure fault-tolerant protocols and the public-key model,” Crypto 87.

    Google Scholar 

  88. J.A. Garay, Reaching (and maintaining) agreement in the presence of mobile faults”. WDAG 94.

    Google Scholar 

  89. O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their validity and a methodology of cryptographic protocol design,” IEEE FOCS 1986, 174–187.

    Google Scholar 

  90. O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” ACM STOC 1987, 218–229.

    Google Scholar 

  91. O. Goldreich and R. Vainish, “How to solve any protocol problem — an efficiency improvement,” Crypto 87.

    Google Scholar 

  92. S. Goldwasser and L. Levin, “Fair computation of general functions in presence of immoral majority,” Crypto 89.

    Google Scholar 

  93. S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput. System Sci. 28 (1984), 270–299. (STOC 82).

    Article  Google Scholar 

  94. S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof systems,” SIAM J. Comput. 18 (1989), 186–208.

    Article  Google Scholar 

  95. S. Haber, “Multiparty cryptographic computation: techniques and applications,” Ph.D. thesis, Columbia University, 1988.

    Google Scholar 

  96. J.T. Hastad, “Pseudo-random generators under uniform assumptions,” STOC 1990, 395–404.

    Google Scholar 

  97. J. Håstad and A. Shamir, “The cryptographic security of truncated linearly related variables,” STOC 1985, 356–362.

    Google Scholar 

  98. A. Herzberg, P. Janson, S. Kutten, R. Molva, G. Tsudik and M. Yung, KryptoKnight: Light-Weight Authentication and Key Distribution.

    Google Scholar 

  99. M. Huang and S. Teng, “Security, verifiability, and universality in distributed computing,” J. Algorithms 11 (1990), 492–521.

    Article  Google Scholar 

  100. R. Impagliazzo, L. Levin, and M. Luby, “Pseudorandom number generation from one-way functions,” ACM STOC 1989, 12–24.

    Google Scholar 

  101. R. Impagliazzo and M. Luby, “One-way functions are essential for complexity based cryptography,” IEEE FOCS 1989, 230–235.

    Google Scholar 

  102. R. Impagliazzo and S. Rudich, “Limits on the provable consequences of one-way permutations,” ACM STOC 1989, 44–61.

    Google Scholar 

  103. R. Impagliazzo, and M. Yung, “Direct minimum-knowledge computation,” Crypto 87.

    Google Scholar 

  104. “Banking — Key management (wholesale)” ISO 8732, Geneva (1988).

    Google Scholar 

  105. “OSI Directory — Part 8: Authentication Framework”, ISO 9594-8, Geneva (1988).

    Google Scholar 

  106. J. Kephart and S. White, Directed-Graph Epidemiological Models of Computer Viruses, IEEE Sym. on Security and Privacy, 1991.

    Google Scholar 

  107. J. Kilian, “Founding cryptography on oblivious transfer,” ACM STOC 1988, 20–31.

    Google Scholar 

  108. J. Kilian, “Uses of Randomness in Algorithms and Protocols,” ACM Distinguished Dissertation, MIT Press, 1990.

    Google Scholar 

  109. J. Kilian, “A general completeness theorem for two-party games,” ACM STOC 1991, 553–560.

    Google Scholar 

  110. L. Kirousis and C. Papadimitriou, “Interval graphs and searching,” Discrete Mathematics 55 (1985) 181–184.

    Article  Google Scholar 

  111. L. Kirousis and C. Papadimitriou, “Searching and pebbling,” Theoretical Computer Science 47 (1986), 205–218.

    Article  Google Scholar 

  112. H. Krawczyk, “Distributed Fingerprints and Secure Information Disperal” ACM PODC 1993, 207–218.

    Google Scholar 

  113. E. Kushilevitz, “Privacy and communication complexity,” IEEE FOCS 1989, 416–421.

    Google Scholar 

  114. E. Kushilevitz, S. Micali, and R. Ostrovsky, “Reducibilities and completeness in multi-party private communication”, FOCS 94.

    Google Scholar 

  115. E. Kushilevitz and A. Rosén, “A randomness-rounds tradeoff in private computation” Crypto 94.

    Google Scholar 

  116. L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Trans. on Programming Lang. and Systems (1982), 382–401.

    Google Scholar 

  117. A. LaPaugh, “Recontamination does not help to search a graph,” JACM, April 1993 (originally Princeton Technical Report 335).

    Google Scholar 

  118. R. Lipton, “How to cheat at mental poker,” proceedings of AMS short course on cryptography, 1981.

    Google Scholar 

  119. M. Luby, S. Micali, and C. Rackoff, “How to simultaneously exchange a secret bit by flipping a symmetrically-biased coin,” IEEE FOCS 1984, 11–21.

    Google Scholar 

  120. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou, “The complexity of searching a graph,” JACM 35 (1988), 18–44.

    Article  Google Scholar 

  121. M. Merritt, “Cryptographic protocols,” Ph.D. thesis, Georgia Institute of Technology, 1983.

    Google Scholar 

  122. S. Micali and P. Rogaway, “Secure computation,” Crypto 91.

    Google Scholar 

  123. M. Naor, “Bit commitment using pseudo-randomness,” Crypto 89.

    Google Scholar 

  124. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, “Perfect zero-knowledge arguments for NP can be based on general complexity assumptions,” Crypto 92.

    Google Scholar 

  125. M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic applications,” STOC 1989, 33–43.

    Google Scholar 

  126. R. M. Needham, M. D. Schroeder, “Using encryption for authentication in large networks of computers,” CACM 21 12 (1978) 993–998.

    Google Scholar 

  127. T. Okamoto and K. Ohta, “Universal electronic cash,” Crypto 91.

    Google Scholar 

  128. A. Orlitsky and A. El Gamal, “Communication with secrecy constraints,” ACM STOC 1984, 217–224.

    Google Scholar 

  129. R. Ostrovsky, R. Venkatesan, and M. Yung, “Fair games against an all-powerful adversary,” Sequences Workshop, Positano, Italy, July 1991.

    Google Scholar 

  130. R. Ostrovsky and M. Yung, “On necessary conditions for secure distributed computing,” DIMACS Workshop on Distributed Computing and Cryptography, Feigenbaum and Merritt (eds.), AMS, 1990, 229–234.

    Google Scholar 

  131. R. Ostrovsky and M. Yung, “Robust computation in the presence of mobile viruses,” ACM PODC 1991, 51–59.

    Google Scholar 

  132. T. Parsons, “Pursuit-evasion in a graph,” in “Theory and application of graphs,” (Y. Alavi and D. Lick, eds.), Springer-Verlag (1976), 426–441.

    Google Scholar 

  133. M. Rabin, “Digital signatures,” in Foundations of Secure Computation, R. DeMillo, D. Dobkin, A. Jones, and R. Lipton (editors), Academic Press, NY, 1978, 155–168.

    Google Scholar 

  134. M. Rabin, “How to exchange secrets by oblivious transfer,” Tech. Memo TR-81, Aiken Computation Laboratory, Harvard University, 1981.

    Google Scholar 

  135. M. Rabin, “Transaction Protection by Beacon” J. Comp. Sys. Sci. 27, 2, 1983, 256–267.

    Article  Google Scholar 

  136. T. Rabin, “Robust sharing of secrets when the dealer is honest or cheating,” M.Sc. Thesis, Hebrew University, 1988.

    Google Scholar 

  137. T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty protocols with honest majority,” ACM STOC 1989, 73–85.

    Google Scholar 

  138. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key cryptosystems,” CACM 21 (1978), 120–126.

    Google Scholar 

  139. J. Rompel, “One-way functions are necessary and sufficient for secure signatures,” STOC 1990, 387–394.

    Google Scholar 

  140. A. Shamir, “How to share a secret,” CACM 22 (1979), 612–613.

    Google Scholar 

  141. A. Shamir, R. Rivest, and L. Adleman, “Mental poker,” Technical Report MIT/LCS/TR-125, M.I.T., 1979.

    Google Scholar 

  142. G. Steiner, C. Neuman, J. I. Schiller, “Kerberos: an authentication server for open network systems”, Proc. Usenix Conf. (Winter 88).

    Google Scholar 

  143. M. Tompa and H. Woll, “Random self-reducibility and zero knowledge interactive proofs of possession of information,” IEEE FOCS 1987, 472–482.

    Google Scholar 

  144. U. Vazirani and V. Vazirani, “Trapdoor pseudo-random number generators, with applications to protocol design,” IEEE FOCS 1983, 23–30.

    Google Scholar 

  145. A. Yao, “Some complexity questions related to distributive computing,” ACM STOC 1979, 209–213.

    Google Scholar 

  146. A. Yao, “Protocols for secure computations,” IEEE FOCS 1982, 160–164.

    Google Scholar 

  147. A. Yao, “How to generate and exchange secrets,” IEEE FOCS 1986, 162–167.

    Google Scholar 

  148. M. Yung, “Cryptoprotocols: subscription to a public key, the secret blocking and the multi-player mental poker game,” Crypto 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerard Tel Paul Vitányi

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yung, M. (1994). Secure distributed computing: Theory and practice. In: Tel, G., Vitányi, P. (eds) Distributed Algorithms. WDAG 1994. Lecture Notes in Computer Science, vol 857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020424

Download citation

  • DOI: https://doi.org/10.1007/BFb0020424

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58449-0

  • Online ISBN: 978-3-540-48799-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics