Skip to main content

Towards an “Erlangen program” for general linear systems theory

  • Conference paper
  • First Online:
Computer Aided Systems Theory — EUROCAST '91 (EUROCAST 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 585))

Included in the following conference series:

Abstract

Any generalizing theory will have scientific and practical validity only if it:

  1. 1.

    reduces theoretical complexities in special theories caused by some inherent limitations;

  2. 2.

    contains special theories as special cases, moreover results, obtained beforehand, must be reproduced in a new more wider scale;

  3. 3.

    brings to appearing of new theoretical results, which are impossible in special theories, moreover, it gives other new questions and problems then solves the old ones;

  4. 4.

    gives the new effective analysis methods and algorithms for the solution of important practical problems.

Does the given algebraic signals theory satisfy these demands? To answer the question, let's analyze what is done in its scale.

Firstly, a fundamental theoretical scheme is designed, containing the problems and research subject description and in which the main theory principles are proved on an abstract level. Secondly, sufficiently common and effective mathematical method of harmonic analysis of signals and systems known models have been worked out. Thirdly, a valuable range of new special theories have been worked out in detail put into the base of the most important practical problems solution.

Such a state of signals and systems abstract theory shows the principle completion of its construction. Hence the following its development must be connected with generalized harmonic analysis methods to concrete problems solution. The obtained practical results will give the answer to the question about the worked out theory and its applicability limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGARWAL, R. C.-BURRUS, C. S.: Fast digital convolution using Fermat transforms. Southwest IEEE Conference Record Houston, Texas (1973), pp. 538–543

    Google Scholar 

  2. AGARWAL, R. C.-BURRUS, C. S.: Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans. Acoust. Speech Signal Process. ASSP-22 (1974), pp. 87–97

    Google Scholar 

  3. AGARWAL, R. C.-BURRUS C. S.: Number theoretic transforms to implement fast digital convolution. Proc. IEEE 63 (1975), pp. 550–560

    Google Scholar 

  4. AUSLANDER, L.-TOLIMIERI, R.: Ring structure and the Fourier transform. Math. Intelligencer 7 (1985), pp. 49–54

    Google Scholar 

  5. BAUM, U.-CLAUSEN, M.: Some lower and upper complexity bounds for generalized Fourier transforms and their inverses. Research Report, University of Bonn 1990

    Google Scholar 

  6. BAUM, U.; CLAUSEN, M.-TIETZ, B.: Improved upper complexity bounds for the discrete Fourier transform. Research Report, University of Bonn 1990

    Google Scholar 

  7. BELOGLASOVA, O. V.-LABUNETS, V. G.: Theory and applications of Gauss transforms. In: Control and Computational Systems Synthesis (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1981, pp. 25–40

    Google Scholar 

  8. BELOGLASOVA, O. V.-LABUNETS, V. G.: Theory and applications of Gauss-Rader transforms (in Russian). Proceed. USSR SA: Technical Cybernetics, No. 2 (1981), pp. 193–200

    Google Scholar 

  9. BERGSON, H.: Durce et Simultancite. Paris 1929

    Google Scholar 

  10. BETH, T.: Verfahren der schnellen Fourier-Transformation. Teubner: Stuttgart 1984

    Google Scholar 

  11. BETH, T.: Generalized Fourier transforms. Lecture Notes Comp. Sci. 296 (1988), pp. 92–118

    Google Scholar 

  12. BETH, T.: On the computational complexity of the general discrete Fourier transform. Theor. Comp. Sci. 51 (1987), pp. 331–339

    Google Scholar 

  13. BETH, Th.; FUMY, W.-MÜHLFELD, R.: Zur algebraischen diskreten Fourier-Transformation. Arch. Math. 40 (1983), pp. 238–244

    Google Scholar 

  14. BETH, Th.: Algorithm engineering a la Galois (AEG). Proc. AAECC-7 (1989)

    Google Scholar 

  15. BRITTEN, D. J.-LEMIRE, F. W.: A structure theorem for rings supporting a discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. ASSP-26 (1978), pp. 284–290

    Google Scholar 

  16. CLAUSEN, M.-GOLLMANN, D.: Spectral transforms for symmetric groups — fast algorithms and VLSI architectures. Proc. Workshop Spectral Techniques 1988 (Dortmund, FRG), Ed.: C. Moraga), pp. 67–85

    Google Scholar 

  17. CLAUSEN, M.: Fast Fourier transforms for metabelian groups. SIAM J. Comput. 18 (1989) No. 3, pp. 584–593

    Google Scholar 

  18. CLAUSEN, M.: Fast generalised Fourier transforms. Theoret. Comp. Science 67 (1989), pp. 55–63

    Google Scholar 

  19. CREUTZBURG, R.: Finite Signalfaltungen und finite Signaltransformationen in endlichen kommutativen Ringen mit Einselement. Dissertation, Universität Rostock 1984

    Google Scholar 

  20. CREUTZBURG, R.-TASCHE, M.: F-Transformation und Faltung in kommutativen Ringen. Elektr. Informationsverarb. Kybernetik 21 (1985), pp. 129–149

    Google Scholar 

  21. CREUTZBURG, R.: Finite Signalfaltungen und finite Signaltransformationen in endlichen kommutativen Ringen mit Einselement. ZKI-Informationen, Akademie der Wissenschaften, Zentralinstitut für Kybernetik und Informationsprozesse, Berlin, Sonderheft 2 (1986)

    Google Scholar 

  22. CREUTZBURG, R.-TASCHE, M.: Number-theoretic transforms of prescribed length. Math. Comp. 47 (1986), pp. 693–701

    Google Scholar 

  23. CREUTZBURG, R.-TASCHE, M.: Construction of moduli for complex number-theoretic transforms. Publ. Math. (Ungarn) 33 (1986), pp. 162–165

    Google Scholar 

  24. CREUTZBURG, R.;-M. TASCHE: Number-theoretic transforms of prescribed length. Proc. EU-ROCAL'87 (Leipzig 1987), Lecture Notes in Computer Science 378, Springer: Berlin 1989, pp. 161–162

    Google Scholar 

  25. CREUTZBURG, R.-ANDREWS, L.: Determination of convenient moduli for mixed-radix numbertheoretic transforms for parallel evaluation in binary and multiple-valued logic. Proceed. 3rd Internat. Workshop on Spectral Techniques (Dortmund, 1988), C. Moraga (Ed.), pp. 46–55

    Google Scholar 

  26. CREUTZBURG, R.-STEIDL, G.: Number-theoretic transforms in rings of cyclotomic integers. Elektr. Informationsverarb. Kybernetik 24 (1988), pp. 573–584

    Google Scholar 

  27. CREUTZBURG, R.-TASCHE, M.: Parameter determination for complex number-theoretic transforms using cyclotomic polynomials. Math. Comp. 52 (1989), pp. 189–200

    Google Scholar 

  28. DUBOIS, E.-VENETSANOPOULOS, A. N.: The discrete Fourier transform over finite rings with application to fast convolution. IEEE Trans. Comput. C-27 (1978), pp. 586–593

    Google Scholar 

  29. DUBOIS, E.-VENETSANOPOULOS, A. N.: The generalized discrete Fourier transform in rings of algebraic integers. IEEE Trans. Acoust. Speech Signal Process.ASSP-28 (1980), pp. 169–175

    Google Scholar 

  30. GETHÖFFER, H.: Algebraic theory of finite systems. Progress in Cybernetics and Systems Research. (1975), pp. 170–176

    Google Scholar 

  31. HARMUTH, H. F.: Grundzüge einer Filtertheorie für die Mäanderfunktion. Archiv Elektr. Übertragung (1964) No. 18, pp. 544–555

    Google Scholar 

  32. HARMUTH, H. F.: Transmission of Information by Orthogonal Functions. Springer: Berlin 1969

    Google Scholar 

  33. HOLMES, R. B.: Mathematical foundations of signal processing. SIAM Review 21 (1979), No. 3, pp.361–388

    Google Scholar 

  34. HOLMES, R. B.: Mathematical foundations of signal processing II. The role of group theory. MIT Lincoln Lab., Techn. Report 781 (October 1987)

    Google Scholar 

  35. HOLMES, R. B.: Signal processing on finite groups. MIT Lincoln Laboratory, Lexington (MA), Technical Report 873 (Febr. 1990)

    Google Scholar 

  36. KARPOVSKY, M. G.: Finite Orthogonal Series in the Design of Digital Devices. Wiley: New York 1976

    Google Scholar 

  37. KARPOVSKY, M. G.: Error detection in digital devices and computer programs with the aid of linear recurrent equations over finite commutative groups. IEEE Trans. Comput. C-26 (1977), pp. 208–218

    Google Scholar 

  38. KARPOVSKY, M. G.: Harmonic analysis over finite commutative groups in linearization problems for systems of logical functions. Information and Control 33 (1977), pp. 142–165

    Google Scholar 

  39. KARPOVSKY, M. G.-TRACHTENBERG, E. A.: Some optimization problems for convolution systems over finite groups. Information and Control 34 (1977), pp. 227–247

    Google Scholar 

  40. KARPOVSKY, M. G.: Fast Fourier transforms on finite non-Abelian groups. IEEE Trans. Comput. C-26 (1977), pp. 1028–1030

    Google Scholar 

  41. KARPOVSKY, M. G.-TRACHTENBERG, E. A.: Fourier transform over finite groups for error detection and error correction in computation channels. Information and Control 40 (1979), pp. 335–358

    Google Scholar 

  42. KARPOVSKY, M. G.: Spectral Techniques and Fault Detection. Academic Press: New York 1985

    Google Scholar 

  43. KRISHNAN, R.; JULLIEN, G. A.-MILLER, W. C.: Complex Digital Signal Processing using Quadratic Residue Number Systems. Proc. ICASSP '85, IEEE (1985), pp. 764–767

    Google Scholar 

  44. LABUNETS, V. G.-SITNIKOV, O. P.: Generalized harmonic analysis of VP-invariant systems and random processes (in Russian) in: Harmonic Analysis on groups in abstract systems theory. Ural Polytechnical Institue Press: Sverdlovsk: 1976, pp. 44–67

    Google Scholar 

  45. LABUNETS, V. G.-SITNIKOV, O. R.: Generalized and fast Fourier transforms on arbitrary finite abelian groups. In: Harmonic Analysis on Groups in Abstract Systems Theory (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1976, pp. 44–66

    Google Scholar 

  46. LABUNETS, V. G.-SITNIKOV, O. R.: Generalized harmonic analysis of VP-invariant linear sequential circuits. In: Harmonic Analysis on Groups in Abstract Systems Theory (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1976, pp. 67–83

    Google Scholar 

  47. LABUNETS, V. G.: Examples of linear dynamical systems, invariant to action of a generalized shift operators. in: Orthogonal Methods for the Application in Signal Processing and Systems Analysis (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1980, pp. 111–118

    Google Scholar 

  48. LABUNETS, V. G.: Symmetry principles in signals and systems. in: Synthesis of Control and Computation Systems (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1980, pp. 4–14

    Google Scholar 

  49. LABUNETS, V. G.: Number-theoretic transforms over algebraic number fields. In: Orthogonal Methods for the Application in Signal Processing and Systems Analysis (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1981, pp. 4–54

    Google Scholar 

  50. LABUNETS, V. G.: Quaternion number-theoretic transform. In: Devices and Methods of Experimental Investigations in Automation (in Russian). Dnepropetrovsk State University Press: Dnepropetrovsk 1981, pp. 28–33

    Google Scholar 

  51. LABUNETS, V. G.: Number theoretic transforms over quadratic fields. In: Complex Control Systems (in Russian). Institute of Cybernetics USSR Academy of Sciences Press: Kiev 1982, pp. 30–37

    Google Scholar 

  52. LABUNETS, V. G.: Algebraic approach to signals and systems theory: linear systems examples. in: Radioelectronics Apparatus and Computational Technics Means Design Automation (in Russian). Ural Polytechnical Institue Press: Sverdlovsk 1982, pp. 75–81

    Google Scholar 

  53. LABUNETS, V. G.: Application of algebraic numbers in signal processing. In: Orthogonal Methods for the Application in Signal Processing and Systems Analysis (in Russian). Ural Polytechnical Institute: Sverdlovsk 1982, pp. 18–29

    Google Scholar 

  54. LABUNETS, V. G.: Relativity of “space” and “time” notions in system theory. in: Orthogonal Methods Application in Signal Processing and Systems Analysis (in Russian). Ural Polytechnical Institue Press: Sverdlovsk 1983, pp. 53–73

    Google Scholar 

  55. LABUNETS, V. G.: Codes invariant to generalized shift operators. In: Automated Systems for Transmission and Automatization (in Russian). Charkov Institute of Radioelectronics Press: Charkov 1983, pp. 56–68

    Google Scholar 

  56. LABUNETS, V. G.: Number theoretic transforms over algebraic number fields and their application in signal processing. In: Theory and Methods of Automation Design (in Russian). Institute of Technical Cybernetics Belorussian Academy of Sciences Press: Minsk 1985, pp. 16–28

    Google Scholar 

  57. LABUNETS, V. G.: Algebraic Theory of Signals and Systems — Computer Signal Processing (in Russian). Ural State University Press: Sverdlovsksk 1984

    Google Scholar 

  58. LABUNETS, V. G.: Fast Fourier transform on affine groups of Galois fields. in: Devices and Methods of Experimental Investigations in Automation. Dnepropetrovsk State University Press: Dnepropetrovsk 1984, pp. 48–60

    Google Scholar 

  59. LABUNETS, V. G.: Fast Fourier transform on generalized dihedral groups. In: Design Automation Theory and Methods (in Russian). Institute of Technical Cybernetics of the Belorussian Academy of Sciences Press: Minsk 1985, pp. 46–58

    Google Scholar 

  60. LABUNETS, V. G.: Theory of Signals and Systems — Part II (in Russian). Ural State University Press: Sverdlovsk 1989

    Google Scholar 

  61. LABUNETS, V. G.; LABUNETS, E. V.-CREUTZBURG, R.: Algebraic foundations of an abstract harmonic analysis based on a generalized symmetry principle. Part I: Analysis of signals. Preprint, Karlsruhe 1991

    Google Scholar 

  62. LABUNETS, V. G.; LABUNETS, E. V.-CREUTZBURG, R.: Algebraic foundations of an abstract harmonic analysis based on a generalized symmetry principle. Part II: Analysis of systems. Preprint, Karlsruhe 1991

    Google Scholar 

  63. LEVITAN, B. M.: Theory of Generalized Shift Operators (in Russian). Nauka: Moscow 1973

    Google Scholar 

  64. MacWILLIAMS, F. J.: Binary codes which are ideals in the group algebra of an abelian group. Bell. Syst. Tech. J. 49 (1970) No. 6, pp. 987–1011

    Google Scholar 

  65. MAHER, D. P.: The Chinese remainder theorem and the discrete Fourier transform. Preprint, Worcester Polytechnic Institute 1979

    Google Scholar 

  66. MAHER, D. P.: Existence theorems for transforms over finite rings with applications to 2-D convolutions. Math. Comp. 35 (1980), pp. 757–767

    Google Scholar 

  67. MARTENS, J. B.-VANWORMHOUDT, M. C.: Convolution using a conjugate symmetry property for number theoretic transforms over rings of regular integers. IEEE Trans. Acoust. Speech Signal Process. ASSP-31 (1983), pp. 1121–1124

    Google Scholar 

  68. NICHOLSON, P. J.: Algebraic theory of finite Fourier transform. J. Comput. Syst. Sci. 5 (1971), pp. 524–547

    Google Scholar 

  69. NICHOLSON, P. J.: Algebraic theory of the finite Fourier transform. Ph. D. dissertation, Stanford University 1969

    Google Scholar 

  70. NICOLIS, G.-PRIGOGINE, I.: Die Erforschung des Komplexen. Piper: München 1987

    Google Scholar 

  71. NUSSBAUMER, H. J.: Dispositif generateur de fonction de convolution discrete et filtre numerique incorporant ledit dispositif. French Patent Application No. 7512557 1975

    Google Scholar 

  72. NUSSBAUMER, H. J.: Digital filtering using complex Mersenne transforms. IBM J. Res. Develop. 20 (1976), pp. 498–504

    Google Scholar 

  73. NUSSBAUMER, H. J.: Digital filtering using polynomial transforms. Electron. Lett. 13 (1977), pp. 386–387

    Google Scholar 

  74. NUSSBAUMER, H. J.: Relative evaluation of various number theoretic transforms for digital filtering applications. IEEE Trans. Acoust. Speech Signal Process. ASSP-26 (1978), pp. 88–93

    Google Scholar 

  75. NUSSBAUMER, H. J.: New polynomial transform algorithms for multidimensional DFT's and convolutions. IEEE Trans. Acoust. Speech Signal Process. ASSP-29 (1981), pp. 74–83

    Google Scholar 

  76. NUSSBAUMER, H. J.: Fast Fourier Transforms and Convolution Algorithms. Springer: Berlin 1981

    Google Scholar 

  77. PICHLER, F.: Synthese linearer periodisch zeitinvariabler Filter mit vorgeschriebenem Sequenzverhalten. Arch. Elektr. Übertragung 22 (1968), pp. 150–161

    Google Scholar 

  78. PICHLER, F.: Some aspects of a theory of correlations with respect to Walsh harmonic analysi. Univ. of Maryland, College Park, Report R-70-11, August 1970

    Google Scholar 

  79. PICHLER, F.: Walsh functions and linear systems theory. Proceed. Symp. on the Application Walsh functions (Washington, D. C., Nov. 1970

    Google Scholar 

  80. PICHLER, F.: Walsh-Fourier-Synthese optimaler Filter. Archiv Elektr. Übertragung (1970) No. 24, pp. 350–360

    Google Scholar 

  81. PICHLER, F.: Zur Theorie verallgemeinerter Faltungssysteme: dyadische Faltungssysteme und Walshfunktionen. Elektron. Informationsverarb. Kybernet. 8 (1972) No.4., pp. 197–209

    Google Scholar 

  82. POLLARD, J. M.: The fast Fourier transform in a finite field. Math. Comp. 25 (1971), pp. 365–374

    Google Scholar 

  83. RADER, C. M.: Discrete convolutions via Mersenne transforms. IEEE Trans. Comput. C-21 (1972), pp. 1269–1273

    Google Scholar 

  84. RADER, C. M.: The number-theoretic DFT and exact discrete convolution. Presented at IEEE Arden House Workshop on Digital Signal Process. Harriman 1972

    Google Scholar 

  85. REED, I. S.-TRUONG, T. K.: The use of finite fields to compute convolutions. IEEE Irans. Inform. Theory IT-21 (1975), pp. 208–213

    Google Scholar 

  86. REED, I. S.-TRUONG, T. K.: Complex integer convolution over a direct sum of Galois fields. IEEE Trans. Inform. Theory IT-21 (1975), pp. 657–661

    Google Scholar 

  87. REED, I. S.-TRUONG, T. K.: Fast Mersenne-prime transforms for digital filtering. IEEE Proceed. 125 (1978), pp.433–440, 126, p.203

    Google Scholar 

  88. REED. I. S.-TRUONG, T. K.: Convolutions over residue classes of quadratic integers. IEEE Trans. Inform. Theory IT-22 (1976), pp. 468–475

    Google Scholar 

  89. SCHÖNHAGE, A.-STRASSEN, V.: Schnelle Multiplikation groβer Zahlen. Computing 7 (1971), pp. 281–292

    Google Scholar 

  90. SITNIKOV, O. P.: Harmonic analysis on groups in abstract systems theory. In: Harmonic Analysis on Groups in Abstract Systems Theory (in Russian). Ural Polytechnical Institute Press: Sverdlovsk 1976, pp. 5–24

    Google Scholar 

  91. TRACHTENBERG, E. A.-KARPOVSKY, M. G.: Filtering in a communication channel by Fourier transforms over finite groups. in: Karpovsky, M. G. (Ed.): Spectral Techniques and Fault Detection. Academic Press: Mew York 1985, pp. 179–216

    Google Scholar 

  92. TRACHTMAN, A. M.; TRACHTMAN, V. A.: The Principles of Discrete Signals on Finite Intervals Theory (in Russian). Soviet Radio: Moscow 1975

    Google Scholar 

  93. VERNADSKY, V. N.: Time problem in modern science (in Russian). Izvest. Akad. Nauk SSSR, Mathematics and Natural Sciences 1932, pp. 511–541

    Google Scholar 

  94. VINITSKY, A. S.: Modulated Filters and Tracking Reception of Frequency Modulated Signals (in Russian). Moscow 1969

    Google Scholar 

  95. WINOGRAD, S.: On computing the discrete Fourier transform. Math. Comp. 32 (1978), pp. 175–199

    Google Scholar 

  96. WINOGRAD, S.: Some bilinear forms whose multiplicative complexity depends on the field of constants. IBM Research Report RC5669 1975

    Google Scholar 

  97. WU, M. Y.-SHERIF, A.: On the commutative class of linear time-varying systems. Int. J. Contr. 23 (1976), pp. 433–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franz Pichler Roberto Moreno Díaz

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creutzburg, R., Labunets, V.G., Labunets, E.V. (1992). Towards an “Erlangen program” for general linear systems theory. In: Pichler, F., Díaz, R.M. (eds) Computer Aided Systems Theory — EUROCAST '91. EUROCAST 1991. Lecture Notes in Computer Science, vol 585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021003

Download citation

  • DOI: https://doi.org/10.1007/BFb0021003

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55354-0

  • Online ISBN: 978-3-540-47034-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics