Skip to main content

Connecting formal semantics to constructive intuitions

  • Conference paper
  • First Online:
Constructivity in Computer Science (Constructivity in CS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 613))

Included in the following conference series:

  • 152 Accesses

Abstract

We use formal semantic analysis to generate intuitive confidence that the Heyting Calculus is an appropriate system of deduction for constructive reasoning. Well-known modal semantic formalisms have been defined by Kripke and Beth, but these have no formal concepts corresponding to constructions, and shed little intuitive light on the meanings of formulae. In particular, the well-known completeness proofs for these semantics do not generate confidence in the sufficiency of the Heyting Calculus, since we have no reason to believe that every intuitively constructive truth is valid in the formal semantics.

Läuchli has proved completeness for a realizability semantics with formal concepts analogous to constructions, but the analogy is inherently inexact. We argue that, in spite of this inexactness, every intuitively constructive truth is valid in Läuchli semantics, and therefore the Heyting Calculus is powerful enough to prove all constructive truths. Our argument is based on the postulate that a uniformly constructible object must be communicable in spite of imprecision in our language, and we show how the permutations in Läuchli's semantics represent conceivable mprecision in a language, independently of the particular structure of the language.

We look at some of the details of a generalization of Läuchli's proof of completeness for the propositional part of the Heyting Calculus, in order to expose the required model constructions and the constructive content of the result. We discuss the reasons why Läuchli's completeness results on the predicate calculus are not constructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1980.

    Google Scholar 

  2. E. W. Beth. The Foundations of Mathematics, A Study in the Philosophy of Science. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1959.

    Google Scholar 

  3. K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda calculus. Information and Computation, 85(1):76–134, 1990. Reprinted in Logical Foundations of Functional Programming, ed. G. Huet, Addison-Wesley (1990) 213–273.

    Article  Google Scholar 

  4. A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58:345–363, 1936.

    MathSciNet  Google Scholar 

  5. S. A. Cook. The complexity of theoremproving procedures. In 3rd Annual ACM Symposium on Theory of Computing, pages 151–158. Association for Computing Machinery, 1971.

    Google Scholar 

  6. H. B. Curry and R. Feys. Combinatory Logic Volume I. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1958.

    Google Scholar 

  7. M. A. E. Dummett. Elements of Intuitionism. Oxford University Press, 1977.

    Google Scholar 

  8. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 1991. To appear.

    Google Scholar 

  9. S. Feferman. Constructive theories of functions and classes. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78, pages 159–224. North-Holland, 1979. Proceedings of the colloquium held in Mons, August 1978.

    Google Scholar 

  10. M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continuations. In Proceedings of the First Annual Symposium on Logic in Computer Science, pages 131–141, 1986.

    Google Scholar 

  11. J. E. Fenstad, editor. Selected Works in Logic. Universitetsforlaget, 1970.

    Google Scholar 

  12. M. C. Fitting. Intuitionistic Logic, Model Theory, and Forcing. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, London, 1969.

    Google Scholar 

  13. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

    Google Scholar 

  14. G. Gentzen. Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 119:140–161, 1943.

    Article  Google Scholar 

  15. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

    Google Scholar 

  16. Jean-Yves Girard. Une extension de l'interprétation de Gödel à l'analysis, et son application à l'élimination des coupures dans l'analysis et la théorie des types. In J. E. Fenstad, editor, Proceedings 2nd Scandinavian Logic Symposium. North-Holland, 1971.

    Google Scholar 

  17. Leon Henkin. Completeness in the theory of types. The Journal of Symbolic Logic, 15:81–91, 1950.

    Google Scholar 

  18. A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Academie der Wissenschaften, Physikalisch-Matematische Klasse, pages 42–56, 1930.

    Google Scholar 

  19. A. Heyting. Intuitionism, an introduction. North-Holland, 1971.

    Google Scholar 

  20. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

    Google Scholar 

  21. J. Hudelmaier. Bounds for Cut Elimination in Intuitionistic Logic. PhD thesis, Universität Tübingen, 1989.

    Google Scholar 

  22. P. T. Johnstone. Conditions related to de Morgan's law. In M. P. Fourman, C. J. Mulvey, and D. S. Scott, editors, Applications of Sheaves. Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, pages 479–491. Springer Verlag, 1979. Lecture Notes in Mathematics 753.

    Google Scholar 

  23. S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic, 10(4):109–124, December 1945.

    Google Scholar 

  24. S. C. Kleene. Realizability. In A. Heyting, editor, Constructivity in Mathematics, pages 285–289. North-Holland Publishing Company, Amsterdam, 1959. Proceedings of the Colloquium Held in Amsterdam, August 26–31, 1957.

    Google Scholar 

  25. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1971.

    Google Scholar 

  26. S. C. Kleene and R. E. Vesley. The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, London, 1965.

    Google Scholar 

  27. Georg Kreisel. On weak completeness of intuitionistic logic. Journal of Symbolic Logic, 27, 1962.

    Google Scholar 

  28. S. A. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

    Google Scholar 

  29. S. A. Kripke. Semantical analysis of intuitionistic logic, I. In J. N. Crossley and M. A. E. Dummett, editors, Formal Systems and Recursive Functions, pages 92–130. North-Holland Publishing Company, Amsterdam, 1965. Proceedings of the Eighth Logic Colloquium, Oxford, July 1963.

    Google Scholar 

  30. H. Läuchli. An abstract notion of realizability for which intuitionistic predicate calculus is complete. In A. Kino, J. Myhill, and R. E. Vesley, editors, Intuitionism and Proof Theory, Studies in Logic and the Foundations of Mathematics, pages 277–234. North-Holland Publishing Company, Amsterdam, London, 1970. Proceedings of the Conference on Intuitionism and Proof Theory, Buffalo, New York, August 1968.

    Google Scholar 

  31. D. M. E. Leivant. Failure of completeness properties for intuitionistic predicate logic for constructive models. Annales Scientifiques de l'Université de Clermont-Ferrand II, Section Mathematiques, 13:93–107, 1976.

    Google Scholar 

  32. P. Lincoln, A. Scedrov, and N. Shankaar. Linearizing intuitionistic implication. In Logic in Computer Science, July 1991.

    Google Scholar 

  33. J. Lipton. Kripke semantics for dependent type theory and realizabity interpretations. In these proceedings, 1991.

    Google Scholar 

  34. M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North-Holland, 1978.

    Google Scholar 

  35. J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B, pages 365–458. North-Holland, Amsterdam, 1990.

    Google Scholar 

  36. C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American Journal of Mathematics, 8:180–202, 1885.

    MathSciNet  Google Scholar 

  37. V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th Annual Symposium on Foundations of Computer Science, pages 109–121. IEEE, October 1976.

    Google Scholar 

  38. D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.

    Google Scholar 

  39. G. F. Rose. Propositional calculus and realizability. Transactions of the American Mathematical Society, 75:1–19, July–September 1953.

    Google Scholar 

  40. T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen. Fundamenta. Mathematicae, 23:150–161, 1934. Reprinted in [11].

    Google Scholar 

  41. R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science, 9(1):67–72, 1979.

    Article  Google Scholar 

  42. R. Statman. Logical relations and the typed lambda calculus. Information and Control, 65:85–97, 1985.

    Article  Google Scholar 

  43. Sören Stenlund. Combinators, λ-terms, and Proof Theory. D. Riedel Publishing Company, Dordrecht-Holland, 1972.

    Google Scholar 

  44. Alfred Tarski. Pojecie prawdy w jezykach nauk dedukcyjnch. Prace Towarzystwa Naukowego Warzawskiego, 1933. English translation in [45].

    Google Scholar 

  45. Alfred Tarski. Logic, Semantics, and Metamathematics. Oxford University Press, 1956.

    Google Scholar 

  46. A. S. Troelstra. Mathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1973.

    Google Scholar 

  47. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: an Introduction, volume II. Studies in Logic and the Foundations of Mathematics. North-Holland, 1988.

    Google Scholar 

  48. A.S. Troelstra. Choice Sequences: a chapter of intuitionistic mathematics. Oxford Logic Guides. Clarendon Press, Oxford, 1977.

    Google Scholar 

  49. A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Second Series, 42:230–265, 1937.

    Google Scholar 

  50. Johan van Benthem. Correspondence theory. In Handbook of Philosophical Logic, Volume 2: Extensions of Classical Logic, pages 167–247. D. Reidel, 1984.

    Google Scholar 

  51. L. Wittgenstein. Tractatus logico-philosophicus. Annalen der Natur-philosophie, 1921. English translation in [52].

    Google Scholar 

  52. L. Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Paul Myers Jr. Michael J. O'Donnell

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurtz, S.A., Mitchell, J.C., O'Donnell, M.J. (1992). Connecting formal semantics to constructive intuitions. In: Myers, J.P., O'Donnell, M.J. (eds) Constructivity in Computer Science. Constructivity in CS 1991. Lecture Notes in Computer Science, vol 613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021079

Download citation

  • DOI: https://doi.org/10.1007/BFb0021079

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55631-2

  • Online ISBN: 978-3-540-47265-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics