Skip to main content

Non-repudiation without public-key

  • Session 1: Authentication
  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1172))

Included in the following conference series:

  • 146 Accesses

Abstract

An unconditionally secure non-repudiation scheme is optimised to maximise the number of messages that may be sent with a given amount of shared key data. By dropping the unconditional security property a related scheme with less memory storage requirements is constructed. In relation to the options for providing non repudiation some discussion of the complexity of the cryptanalysis of public and private key cryptosystems is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bach, Intractable Problems in Number Theory, Advances in Cryptology — CRYPTO '88, proceedings, Springer-Verlag 1989, pp. 77–93.

    Google Scholar 

  2. J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, On families of Hash functions via Geometric Codes and Concatenation, Advances in Cryptology — CRYPTO '93, proceedings, Springer-Verlag 1994, pp. 331–342.

    Google Scholar 

  3. R. Blom, An Optimal class of Symmetric Key Generation Systems, Advances in Cryptology — EUROCRYPT '84, proceedings, Springer-Verlag 1985, pp. 335–338.

    Google Scholar 

  4. G. Brassard. A note on the complexity of cryptography. IEEE Transactions on Information Theory, 25, 1979, pp. 232–233.

    Google Scholar 

  5. Y. Desmedt and M. Yung, Arbitrated Unconditionally Secure Authentication Can Be Unconditionally Protected against Arbiters Attacks, Advances in Cryptology — CRYPTO '90, proceedings, Springer-Verlag 1991, pp. 177–188.

    Google Scholar 

  6. S. Even and Y. Yacobi, Cryptocomplexity and NP-completeness. In Proc. of 8th Colloq. on Automata, Languages, and Programming, Lecture Notes in Computer Science, Springer-Verlag 1980, pp. 195–207.

    Google Scholar 

  7. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freedman, San Francisco, 1979.

    Google Scholar 

  8. T. Johansson and B. Smeets, On A2-codes Including Arbiters Attacks, Advances in Cryptology — EUROCRYPT '94, proceedings (rump session), Springer-Verlag 1995.

    Google Scholar 

  9. T. Johansson, On the construction of Perfect Authentication Codes that permit Arbitration, Advances in Cryptology — CRYPTO '93, proceedings, Springer-Verlag 1993, pp 341–354.

    Google Scholar 

  10. H. J. Knobloch, A Smart Card Implementation of the Fiat-Shamir Identification Scheme, Advances in Cryptology — EUROCRYPT '88, proceedings, Springer-Verlag 1989, pp. 87–96.

    Google Scholar 

  11. K. Kurosawa, New bounds on Authentication Codes with Arbitration, Advances in Cryptology — CRYPTO '94, proceedings, Springer-Verlag 1994, pp 140–149.

    Google Scholar 

  12. A. L. Selman, Complexity Issues in Cryptography, Proceedings of Symposia in Applied Mathematics, 38, 1989, pp. 92–107.

    Google Scholar 

  13. B. Schneier, Applied Cryptography, 2nd Edition, John Wiley and Sons, ISBN 0-471-12845-7, 1995.

    Google Scholar 

  14. G. J. Simmons, Message Authentication with Arbitration of Transmitter/Receiver disputes, Advances in Cryptology — EUROCRYPT '87, proceedings, Springer-Verlag 1988, pp. 151–165.

    Google Scholar 

  15. G. J. Simmons, A Cartesian Product Construction for Unconditionally Secure Authentication Codes that permit Arbitration, Journal of Cryptology, 2(2), pp. 77–104, 1990.

    Google Scholar 

  16. D. Stinson, Universal Hashing and Authentication codes, Advances in Cryptology — CRYPTO '91, proceedings, Springer-Verlag 1992, pp 74–85.

    Google Scholar 

  17. R. Taylor, Factoring and Cryptography, Telecom Australia, Research Laboratories Report 8048, July 1991.

    Google Scholar 

  18. R. Taylor, Discrete Logs, Factoring and Cryptography, Unpublished work completed in 1991.

    Google Scholar 

  19. R. Taylor, Near Optimal Unconditionally Secure Authentication, Advances in Cryptology — EUROCRYPT '94, proceedings, Springer-Verlag 1995, pp. 244–253.

    Google Scholar 

  20. M. N. Wegman and J. L. Carter, New Hash Functions and their use in Authentication and set equality, Journal of Computer and System Sciences 22, 1981, pp. 265–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josef Pieprzyk Jennifer Seberry

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taylor, R. (1996). Non-repudiation without public-key. In: Pieprzyk, J., Seberry, J. (eds) Information Security and Privacy. ACISP 1996. Lecture Notes in Computer Science, vol 1172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023284

Download citation

  • DOI: https://doi.org/10.1007/BFb0023284

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61991-8

  • Online ISBN: 978-3-540-49583-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics