Skip to main content

ROTEX — The first space robot technology experiment

  • Section 9 Space Robotics And Flexible Manipulators
  • Conference paper
  • First Online:
Experimental Robotics III

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 200))

Abstract

The paper describes the key technologies developed for the space robot technology experiment ROTEX that flew with shuttle flight STS 55 end of April 93. During this „spacelab-D2”-mission for the first time in the history of space flight a small, multisensory robot (i.e. provided with modest local intelligence) has performed a number of prototype tasks on board a spacecraft in the most different operational modes that are feasible today, namely preprogrammed (and reprogrammed from ground), remotely controlled (teleoperated) by the astronauts using a control ball and a stereo-TV-monitor, but also remotely controlled from ground via the human operator as well as via machine intelligence. In these operational modes the robot successfully closed and opened connector plugs (bajonet closure), assembled structures from single parts and captured a free-floating object.

Key technologies for the success of ROTEX have been its multisensory gripper technology, local (shared autonomy) sensory feedback control concepts, and the powerful delay-compensating 3D-graphics simulation (predictive simulation) in the telerobotic ground station.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. S.Lee, G. Bekey, A.K. Bejczy, „Computer control of space-borne teleoperators with sensory feedback”, Proceedings IEEE Conference on Robotics and Automation, S. 205–214, St. Louis, Missouri, 25–28 March 1985.

    Google Scholar 

  2. J. Heindl, G. Hirzinger, „Device for programing movements of a robot”, US-Patent: No. 4,589,810, May 20, 1986.

    Google Scholar 

  3. G. Hirzinger, J. Dietrich, „Multisensory robots and sensorbased path generation”. Proceedings IEEE Conference on Robotics and Automation, S. 1992–2001, San Francisco, April 7–10, 1986.

    Google Scholar 

  4. M.T. Mason, „Compliance and force control for computer controlled manipulators”, IEEE Trans. on Systems, Man and Cybernetics, Vol SMC-11, No. 6 (1981, 418–432).

    Google Scholar 

  5. G. Hirzinger, K. Landzettel, „Sensory feedback structures for robots with supervised learning”. Proceedings IEEE Conference, Int. Conference on Robotics and Automation, S. 627–635, St. Louis, Missouri, March 1985.

    Google Scholar 

  6. G. Hirzinger, J. Heindl, „ Sensor programming, a new way for teaching a robot paths and forces torques simultaneously”. 3rd Int. Conference on Robot Vision and Sensory Controls, Cambridge, Massachusetts/USA, Nov. 7–10. 1983.

    Google Scholar 

  7. T.B. Sheridan, „Human supervisory control of robot systems”. Proceedings IEEE Conference, Int. Conference on Robotics and Automation, San Francisco, April 7–10, 1986.

    Google Scholar 

  8. B.C. Vemuri, G. Skofteland, „Motion estimation from multi-sensor data for tele-robotics”, IEEE Workshop on Intelligent Motion Control, Istanbul, August 20–22, 1990.

    Google Scholar 

  9. G. Hirzinger, J. Heindl, K. Landzettel, „Predictive and knowledge-based telerobotic control concepts”. IEEE Conference on Robotics and Automation, Scottsdale, Arizona, May 14–19, 1989.

    Google Scholar 

  10. J. Dietrich, G. Hirzinger, B. Gombert, J. Schott, „On a Unified Concept for a New Generation of Light-Weight-Robots”, Proceedings of the Conference ISER, Int. Symposium on Experimental Robotics, Montreal, Canada, June 1989.

    Google Scholar 

  11. F. Lange, „A Learning Concept for Improving Robot Force Control”, IFAC Symposium on Robot Control, Karlsruhe, Oct. 1988.

    Google Scholar 

  12. J. S. Albus, „A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)”, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, pp. 221–227, Sept. 1975.

    Google Scholar 

  13. S. Hayati, S.T. Venkataraman, „Design and Implementation of a Robot Control System with Traded and Shared Control Capability”, Proceedings IEEE Conference Robotics and Automation, Scottsdale, 1989.

    Google Scholar 

  14. L. Conway, R. Volz, M. Walker, „Tele-Autonomous Systems: Methods and Architectures for Intermingling Autonomous and Telerobotic Technology”, Proceedings IEEE Conference Robotics and Automation, Raleigh, 1987.

    Google Scholar 

  15. G. Saridis, „Machine-Intelligent Robots: A Hierarchical Control Approach”, in Machine Intelligence and Knowledge Engineering for Robotic Applications, NATO ASI Series F. Vol. 33, Springer Verlag 1987.

    Google Scholar 

  16. G. Hirzinger, J. Dietrich, B. Gombert, J. Heindl, K. Landzettel, J. Schott, „The sensory and telerobotic aspects of the space robot technology experiment ROTEX”, Proc. i-SAIRAS 2th Int. Symposium Artificial Intelligence, Robotics and Automation, in Space, Toulouse, France, Sept.30–Oct.2, 1992.

    Google Scholar 

  17. G. Hirzinger, J. Heindl, K. Landzettel, B. Brunner, „Multisensory shared autonomy — a key issue in the space robot technology experiment ROTEX”, IEEE Conf. on Intelligent Robots and Systems (IROS), Raleigh, USA, July 7–10, 1992.

    Google Scholar 

  18. J. Funda, R.P. Paul, „Efficient control of a robotic system for time-delayed environments”. Proceedings of the Fifth International Conference on Robotics and Automation, pages 133–137, 1989.

    Google Scholar 

  19. P. Simkens, „Graphical simulation of sensor controlled robots”. PhD. Thesis, 1990, KU Leuven.

    Google Scholar 

  20. D. Dickmanns, „4D-dynamic scene analysis with integral spatio-temporal models”, Fourth Int. Symposium on Robotics Research, Santa Cruz, Aug. 1987.

    Google Scholar 

  21. Christian Fagerer and Gerhard Hirzinger, „Predictive Telerobotic Concept for Grasping a Floating Object”, Proc. IFAC Workshop on Spacecraft Automation and On-Board Autonomous Mission Control, Darmstadt, Sept. 1992

    Google Scholar 

  22. B. Brunner, G. Hirzinger, K. Landzettel, J. Heindl, „Multisensory shared autonomy and tele-sensor-programming — key issues in the space robot technology experiment ROTEX”, IROS'93 International Conference on Intelligent Robots and Systems, Yokohama, Japan, July 26–30, 1993.

    Google Scholar 

  23. G. Hirzinger, A. Baader, R. Koeppe, M. Schedl, „Towards a new generation of multisensory light-weight robots with learning capabilities”, IFAC'93 World Congress, Sydney, Australia, July 18–23, 1993.

    Google Scholar 

  24. G. Hirzinger, J. Heindl, K. Landzettel, B. Brunner, „Multisensory shared autonomy — a key issue in the space robot technology experiment ROTEX”, IEEE Conference on Intelligent Robots and Systems (IROS), Raleigh, USA, July 7–10, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tsuneo Yoshikawa (PhD)Fumio Miyazaki (PhD)

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this paper

Cite this paper

Hirzinger, G. (1994). ROTEX — The first space robot technology experiment. In: Yoshikawa, T., Miyazaki, F. (eds) Experimental Robotics III. Lecture Notes in Control and Information Sciences, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027622

Download citation

  • DOI: https://doi.org/10.1007/BFb0027622

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19905-2

  • Online ISBN: 978-3-540-39355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics