Skip to main content

Differential features of cortical folds

  • Brain Models and Neurosurgery
  • Conference paper
  • First Online:
CVRMed-MRCAS'97 (CVRMed 1997, MRCAS 1997)

Abstract

Analysis of functional images of the brain increasingly relies on individual anatomy of subjects. The aim is the construction of accurate anatomy-indexed functional mappings which would be of crucial importance for neurosurgical planning. The major difficulty relies in the important inter-subject structural variability of the cortical anatomy. In this paper, we assume that a large part of this variability can be overcome if more elementary and stable units than sulci and gyri are chosen to analyse cortex anatomy. Hence, we try to highlight such features using differential geometry. A method extracting cortical fold crest lines is described first. Then a morphological decomposition of sulci along crest lines is proposed. Finally, the relevance of this approach is demonstrated by a segmentation of central sulcus into two stable parts for ten subjects.

This work was partially supported by the GIS Sciences de la Cognition

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An approach to Cerebral Imaging. Thieme Verlag Publisher, Inc., Georg Thieme Verlag, Stuttgart, New-York, 1988.

    Google Scholar 

  2. C. Davatzikos. Nonlinear registration of brain images using deformable models. In IEEE. Math. Methods in Biomedical Image Analysis, San Francisco, 1996.

    Google Scholar 

  3. P. M. Thomson, C. Schwartz, and A. W. Toga. High-resolution random mesh algorithms for creating a probalistic 3D surface atlas of the human brain. NeuroImage, 3:19–34, 1996.

    Article  PubMed  Google Scholar 

  4. R. Bajcsy and S. Kovacic. Multiresolution elastic matching. Computer Vision, Graphics and Image Processing, 46:1–21, 1989.

    Google Scholar 

  5. M. Ono, S. Kubik, and C. D. Aberteney. Atlas of the Cerebral Sulci. Georg Thieme Verlag, 1990.

    Google Scholar 

  6. D. Cunningham. Contribution to the surface anatomy of the cerebral hemispheres. Academy House, Dublin, 1892.

    Google Scholar 

  7. D. Waterston. Complete bilateral interruption of the fissure of Rolando. J. Anat., pages 143–146, 1907.

    Google Scholar 

  8. J.-P. Thirion and A. Gourdon. The marching lines algorithms: new results and proofs. Technical Report 1881, INRIA, 1993.

    Google Scholar 

  9. G. Szekely, C. Brechbüler, O. Kübler, R. Ogniewicz, and T. Budinger. Mapping the human cerebral cortex using 3D medial manifolds. In SPIE. Visualization in Biomedical Computing, volume 1808, 1992.

    Google Scholar 

  10. M. Vaillant, C. Davatzikos, and R. N. Bryan. Finding 3D parametric representations of the deep cortical folds. In IEEE. Mathematical Methods in Biomedical Image Analysis, San Francisco, California, 1996.

    Google Scholar 

  11. N. Royackkers, H. Fawal, M. Desvignes, M. Revenu and J.-M. Travères. Feature extraction for cortical sulci identification. In SCIA, Uppsalla, Sweden, 1995.

    Google Scholar 

  12. J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, and J. López-Krahe. From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging and Vision, 5:297–318, 1995.

    Article  Google Scholar 

  13. J.-F. Mangin, J. Régis, I. Bloch, V. Frouin, Y. Samson, and J. López-Krahe. A MRF based random graph modelling the human cortical topography. In CVRMed'95, LNCS 905, Springer-Verlag, pp. 177–183, 1995.

    Google Scholar 

  14. J. Régis. Anatomie sulcale profonde et cartographie fonctionnelle du cortex cérébral. MD Thesis. Université d'Aix-Marseille II, 1994.

    Google Scholar 

  15. M. Yasargil. Microneurosurgery. Georg Thieme Verlag, Stuttgart, 1994.

    Google Scholar 

  16. W. Welker and S. Seidenstein. Somatic sensory representation in the cerebral cortex of the racoon (procyon lotor). J. Comp. Neurol., 1959.

    Google Scholar 

  17. M. P. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewoods Cliffs, NJ, 1976.

    Google Scholar 

  18. P. T. Sander and S. W. Zucker. Inferring surface trace and differential structure from 3D images. IEEE. Trans. on PAMI, 12(9):833–854, 1990.

    Google Scholar 

  19. J.-P. Thirion and A. Gourdon. Computing the differential characteristics of isointensity images. Computer Vision and Image Understanding, 61(2):190–202, 1995.

    Article  Google Scholar 

  20. G. Schlaug, L. Jäncke, Y. Huang, and H. Steinmetz. In vivo evidence of structure brain asymetry in musicians. Science, 267:699–701, 1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jocelyne Troccaz Eric Grimson Ralph Mösges

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manceaux-Demiau, A., Mangin, J.F., Régis, J., Pizzato, O., Frouin, V. (1997). Differential features of cortical folds. In: Troccaz, J., Grimson, E., Mösges, R. (eds) CVRMed-MRCAS'97. CVRMed MRCAS 1997 1997. Lecture Notes in Computer Science, vol 1205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029266

Download citation

  • DOI: https://doi.org/10.1007/BFb0029266

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62734-0

  • Online ISBN: 978-3-540-68499-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics