Skip to main content

Gentzen type axiomatization for PAL

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1990 (MFCS 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 452))

  • 760 Accesses

Abstract

The aim of propositional algorithmic logic (PAL) is to investigate properties of simple nondeterministic while-program schemes on propositional level. We present finite, cut-free, Gentzentype axiomatization of PAL. As a corollary from completeness theorem we obtain small model theorem and algorithm for checking validity of PAL formulas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher M. J. and Ladner R. E., Propositional dynamic logic of regular programs, J. Comput. Syst. Sci. 18 194–211.

    Google Scholar 

  2. Harel D., Dynamic Logic, Handbook of Philosophical Logic Vol 11, 197–604 (1984)

    Google Scholar 

  3. Mirkowska G., PAL — propositional algorithmic logic, Fund Informaticae 4, 675–760. Also in Lecture Notes in Computer Science, Vol 125, Springler-Verlag pp.23–101 (1981)

    Google Scholar 

  4. Nishimura H., Sequential Method in Propositional Dynamic Logic, Acta Informatica 12, pp. 377–400 (1979)

    Google Scholar 

  5. Nishimura H., Semantical Analysis of Constructive PDL, Publ. Res. Inst. Math. Sci. Kyoto Univ. (1981)

    Google Scholar 

  6. Salwicki A., Formalized algorithmic languages, Bull. Acad. Polon Sci. Ser Sci. Math. Astron. Phys. 18, pp. 227–232 (1970)

    Google Scholar 

  7. Streett R.S., Propositional dynamic logic of looping and converse is elementary decidable, Inf. and Control 54 pp. 121–141. (1982)

    Google Scholar 

  8. Walukiewicz I. Decision procedure for checking validity of PAL formulas to appear in Proceedings of IMYCS 90, Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Branislav Rovan

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walukiewicz, I. (1990). Gentzen type axiomatization for PAL. In: Rovan, B. (eds) Mathematical Foundations of Computer Science 1990. MFCS 1990. Lecture Notes in Computer Science, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029648

Download citation

  • DOI: https://doi.org/10.1007/BFb0029648

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52953-8

  • Online ISBN: 978-3-540-47185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics