Skip to main content

Toeplitz words, generalized periodicity and periodically iterated morphisms

Extended abstract

  • Session 4B: Combinatorics
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 959))

Included in the following conference series:

Abstract

We consider so-called Toeplitz words which can be viewed as generalizations of one-way infinite periodic words. We compute their subword complexity, and show that they can always be generated by iterating periodically a finite number of morphisms. Moreover, we define a structural classification of Toeplitz words which is reflected in the way how they can be generated by iterated morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc.1 (1994), 133–143.

    Google Scholar 

  2. J.-P. Allouche and R. Bacher, Toeplitz sequences, paperfolding, towers of Hanoi and progression free sequences of integers, Ens. Math.38 (1992), 315–327.

    Google Scholar 

  3. K. Culik II, J. Karhumäki, and A. Lepistö, Alternating iteration of morphisms and the Kolakoski sequence, in Lindenmayer systems, G. Rozenberg and A. Salomaa, eds., pp. 93–106, Springer-Verlag, 1992.

    Google Scholar 

  4. C. Davis and D. E. Knuth, Number representations and dragon curves I, II, J. Recr. Math.3 (1970), 61–81 and 133–149.

    Google Scholar 

  5. A. Ehrenfeucht, K. P. Lee, and G. Rozenberg, Subword complexity of various classes of deterministic languages whithout interaction, Theoret. Comput. Sci.1 (1975), 59–75.

    Article  Google Scholar 

  6. N. J. Fine and H. S. Wilf, Uniqueness theorem for periodic functions, Proc. Am. Math. Soc.16 (1965), 109–114.

    Google Scholar 

  7. H. Furstenberg, Recurrences in ergodic theory and combinatorial number theory, Princeton Univ. Press, 1981.

    Google Scholar 

  8. K. Jacobs and M. Keane, 0–1 sequences of Toeplitz type, Z. Wahr. verw. Geb.13 (1969), 123–131.

    Article  Google Scholar 

  9. W. Kolakoski, Self-generating runs, prob. 5304, Amer. Math. Monthly73 (1966), 681–682. Solution by N. Ucoluk.

    MathSciNet  Google Scholar 

  10. A. Lepistö, On the power of periodic iteration of morphisms, in ICALP '93, pp. 496–506, Lect. Notes Comput. Sci. 700, Springer-Verlag, 1993.

    Google Scholar 

  11. M. Lothaire, Combinatorics on Words, vol. 17 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.

    Google Scholar 

  12. M. Mendès France and A. J. van der Poorten, Arithmetic and analytic properties of paperfolding sequences, Bull. Austr. Math. Soc. 24 (1981).

    Google Scholar 

  13. H. Prodinger and F. J. Urbanek, Infinite 0–1 sequences without long adjacent identical blocks, Discr. Math.28 (1979), 277–289.

    Article  Google Scholar 

  14. O. Toeplitz, Beispiele zur Theorie der fastperiodischen Funktionen, Math. Ann.98 (1928), 281–295.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ding-Zhu Du Ming Li

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cassaigne, J., Karhumäki, J. (1995). Toeplitz words, generalized periodicity and periodically iterated morphisms. In: Du, DZ., Li, M. (eds) Computing and Combinatorics. COCOON 1995. Lecture Notes in Computer Science, vol 959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030839

Download citation

  • DOI: https://doi.org/10.1007/BFb0030839

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60216-3

  • Online ISBN: 978-3-540-44733-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics