Skip to main content

A model of cerebellar saccadic motor learning using qualitative reasoning

  • Biological Foundations of Neural Computation
  • Conference paper
  • First Online:
Biological and Artificial Computation: From Neuroscience to Technology (IWANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Included in the following conference series:

Abstract

We present a novel approach to modeling neural behavior using a “qualitative reasoning” algorithm. The Qualitative Reasoning Neuron (QRN) is capable of qualitatively reproducing single neuron behavior, but is computationally simple enough to use in large scale neural networks without loss of critical details. QRN simulations of a single Purkinje cell (∼1600 compartments) show significant speedup over a recent GENESIS model. A large scale model of the cerebellar cortex (256 neurons, ∼300,000 compartments) is used to simulate a saccadic eye movement task. The model reproduces in vivo Purkinje cell bursting patterns during saccades. We simulate rapid and gradual adaptation paradigms and show that error correction is possible when climbing fiber input is periodic and contains no error signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sparks, D.L., Barton, E.J. (1993) Neural control of saccadic eye movements. Curr. Opin. Neurobiol. 3, 966–972.

    Google Scholar 

  2. Ohtsuka, K., Noda H. (1995) Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J. Neurophysiol., 74, No. 5, 1828–1840.

    Google Scholar 

  3. Ohtsuka, K., Noda, H. (1992) Burst discharges of mossy fibers in the oculomotor vermis of macaque monkeys during saccadic eye movements. Neurosci. Res. 15 102–114.

    Google Scholar 

  4. Sato, H., Noda, H. (1992) Saccadic dysmetria induced by transient functional decortication of the cerebellar vermis Exp. Brain Res. 88, 455–458.

    Google Scholar 

  5. Fuchs, A.F., Robinson, F.R., Straube, A. (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J. Neurophysiol. 70 1723–1740.

    Google Scholar 

  6. Robinson, F.R., Straube, A., Fuchs, A.F. (1993) Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J. Neurophysiol. 70, 1741–1758.

    Google Scholar 

  7. Ohtsuka, K., Noda, H. (1991) Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J. Neurophysiol. 65, 1422–1434.

    Google Scholar 

  8. Ito, M. (1989) Long-term depression. Ann. Rev. Neurosci. 12, 85–102.

    Google Scholar 

  9. Llinas, R., Welsh, J. P. (1993) On the cerebellum and motor learning. Curr. Opin. Neurobiol. 3, 958–965.

    Google Scholar 

  10. Keifer, J., Houk, J. C. (1994) Motor function of the cerebellorubrospinal system. Physiol. Rev. 74, 509–542.

    Google Scholar 

  11. Houk, J.C., Galiana, H.L., Guitton, D. (1992) in Tutorials in Motor Behavior II, eds. Stelmach, G. E., Requin, J. (Elsevier Science Publishers), pp. 443–474.

    Google Scholar 

  12. Helmchen, C., Buttner, U. (1995) Saccade-related Purkinje cell activity in the oculomotor vermis during spontaneous eye movements in light and darkness. Exp. Brain Res. 103, 198–208.

    Google Scholar 

  13. Albus, J.S. (1971) A theory of cerebellar function. Math. Biosci. 10, 25–61.

    Google Scholar 

  14. Marr, D. (1969) A theory of cerebellar cortex. J. Physiol. (London.) 202, 437–470.

    Google Scholar 

  15. Linden, D.J., Connor, J.A. (1995) Long-term synaptic depression. Ann. Rev. Neurosci. 18, 318–357.

    Google Scholar 

  16. Kawato, M., Gomi, H. (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol.Cybern. 68, 95–103.

    Google Scholar 

  17. Houk, J.C., Barto, A.G. (1992) in Tutorials in Motor Behavior II, eds. Stelmach, G. E. & Requin, J. (Elsevier Science Publishers), pp. 71–100.

    Google Scholar 

  18. Keating, J.G., Thach, W.T. (1995) Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J. Neurophysiol. 73, 1329–1340.

    Google Scholar 

  19. Dean, P., Mayhew, J.E., Langdon, P. (1994) Learning and maintaining saccadic accuracy: A model of brainstem-cerebellar interactions J. Cog. Sci. 6, 117–138.

    Google Scholar 

  20. Dean, P., (1995) Modelling the role of the cerebellar fastigial nuclei in producing accurate saccades: the importance of burst timing. Neuroscience 68, 1059–1077.

    Google Scholar 

  21. Schweighofer, N., Arbib, M.A., Dominey, P.F. (1996) A model of the cerebellum in adaptive control of saccadic gain. I. The model and its biological substrate. Biol. Cybern. 75, 19–28.

    Google Scholar 

  22. Schweighofer, N., Arbib, M.A., Dominey, P.F. (1996) A model of the cerebellum in adaptive control of saccadic gain. II. Simulation results. Biol. Cybern. 75, 29–36.

    Google Scholar 

  23. Krichmar, J.L., Olds, J.L., Hunter, L. (1997) Qualitative reasoning as a modeling tool for computational neuroscience. Submitted to Biol. Cybern.

    Google Scholar 

  24. Krichmar, J.L., Hunter L., Olds J.L. (1996) A qualitative model of cerebral saccadic control. Soc. Neurosci. Abstr. 22, 1093.

    Google Scholar 

  25. Weld, D. S. & De Kleer, J. (1990) Readings in Qualitative Reasoning about Physical Systems. (Morgan Kaufmann Publishers Inc., San Mateo, CA).

    Google Scholar 

  26. Pierrot-Deseilligny C, Rivaud S, Gaymard B, Muri R, Vermersch A.I. (1995) Cortical control of saccades. Annals of Neurology, 37, 557–567.

    Google Scholar 

  27. Kuipers, B. (1986) Qualitative simulation. Artificial Intelligence 29, 289–388.

    Google Scholar 

  28. De Schutter, E., Bower J.M. (1994) An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice. J. Neurophysiol. 71(1), 375–400.

    Google Scholar 

  29. De Schutter, E., Bower, J.M. (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol., 71(1), 401–419.

    Google Scholar 

  30. Mitgaard, J. (1992) Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. J. Physiol. (London) 457, 329–354

    Google Scholar 

  31. Llinas, R.R. (1981) Electrophysiology of the cerebellar networks. In: Handbook of physiology. The nervous system. Motor control. American Physiology Society, Bethesda, MD, Sect. 1, Vol. II, pp 831–876

    Google Scholar 

  32. Optican, L.M. (1985) in “Adaptive mechanisms in gaze control: Facts and theories.”, eds. Berthoz & Melvill-Jones (Elsevier Science Publishers) pp. 71–79.

    Google Scholar 

  33. Llinas, R.R., Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian slices. J. Physiol. (London) 305, 171–195.

    Google Scholar 

  34. Sato, Y., Miura, M., Fushiki, H., Kawasaki, T. (1993) Barbiturate depresses simple spike activity in cerebellar Purkinje cells after climbing fiber input. J. Neurophysiol., 69(4), 1082–1090.

    Google Scholar 

  35. Ito, M. (1984) The cerebellum and neural control (Raven Press, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krichmar, J.L., Ascoli, G.A., Hunter, L., Olds, J.L. (1997). A model of cerebellar saccadic motor learning using qualitative reasoning. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032471

Download citation

  • DOI: https://doi.org/10.1007/BFb0032471

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics