Skip to main content

Towards an object-oriented framework for the modeling of integrated metabolic processes

  • Models of Gene Regulation and Metabolic Pathways
  • Conference paper
  • First Online:
Bioinformatics (GCB 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1278))

Included in the following conference series:

  • 183 Accesses

Abstract

This contribution aims at the development of a modular and object-oriented framework for the modeling of the entity of all metabolic reactions including their regulations as a collection of interacting subsystems. The purposes of this framework lie in facilitating model development, adaption and reuse. Additionally, the presented methodology can be seen as a first step towards the development of a common communication framework, to support the interdisciplinary research in biotechnology and biochemical engineering. For the development of this framework ideas from general system theory, object-oriented programming and knowledge representation are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bogusch and W. Marquardt. A Formal Representation of Process Model Equationa. Suppl. to Comput. Chem. Engng., 19:211–216, 1995.

    Article  Google Scholar 

  2. G. Breuel, E. D. Gilles, and A. Kremling. A systematic approach to structured biological models. In A. Munak and K. Schügerl, editors, 6 th Int. Conference on Comput. Appl. in Biotechn., May 14–17, pages 199–204, Garmisch, Germany, 1995. DECHEMA.

    Google Scholar 

  3. G. Breuel, A. Kremling, and E. D. Gilles. An object-oriented approach to the modeling of bacterial metabolism. SAMS, 18–19:813–817, 1995.

    Google Scholar 

  4. M. Bunge. Treatise on Basic Philosophy. Vol 3: Ontology II: A world of systems. D. Reidel Comp., Dordrecht, Holland, 1979.

    Google Scholar 

  5. J. Collado-Vides. A Syntactic Representation of Units of Genetic Information — A Syntax of Units of Genetic Information. J. theor. Biol., 148:401–429, 1991.

    PubMed  Google Scholar 

  6. P. Fu and J.P. Barford. An artificial intelligence framework of generic cell modeling. In A. Munak and K. Schügerl, editors, 6 th Int. Conference on Comput. Appl. in Biotechn., May 14–17, pages 353–356, Garmisch, Germany, 1995. DECHEMA.

    Google Scholar 

  7. T. Gaasterland and E. Selkov. Reconstruction of metabolic networks using incomplete information. In 3 th Int. Conference on intelligent systems for molecular biology, July 1995, Cambridge, England, 1995.

    Google Scholar 

  8. A. Gerstlauer, M. Hierlemann, and W. Marquardt. On the representation of balance equations in a knowledge-based process modeling tool. In 11 th Int. Congress of Chemical Engineering, Chemical Equipment Design and Automation, CHISA '93, 29 August–3 September, paper no. D5.3, Praha, Czech Republic, 1993.

    Google Scholar 

  9. R. Hofestädt. A simulation shell to model metabolic pathways. J. Syst. Analysis Modeling Simulation, 11:253–262, 1993.

    Google Scholar 

  10. R. Hofestädt and F. Meineke. Metabolica — A Rule Based System to Model Metabolic Processes. In T. Smith, editor, International Symposium and Workshop: MacroMolecules, Genes, and Computers, Waterville Valley, Boston, 1993. MIT/AAAI Press.

    Google Scholar 

  11. R. Hofestädt and F. Meineke. Interactive Modeling and Simulation of Biochemical Networks. Comput. Bio. Med., 25(3):321–334, 1995.

    Article  Google Scholar 

  12. P. Karp and S. Paley. Representations of metabolic knowledge: Pathways. In R. Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of the First International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, 1994. AAAI Press.

    Google Scholar 

  13. P. Karp and M. Riley. Representations of metabolic knowledge. In Proceedings of First International Conference on Intelligent Systems for Molecular Biology, pages 207–215. Morgan Kaufman Publishers, Bethesda, MD, 1993.

    Google Scholar 

  14. P. Karp, M. Riley, S. Paley, and A. Pellegrini-Toole. EcoCyc: Electronic Encyclopedia of E. coli Genes and Metabolism. Nucleic Acid Research, 24(1):32–40, 1996.

    Article  Google Scholar 

  15. G.J. Klir. Architecture of Systems Problem Solving. Plenum Press, New York, 1985.

    Google Scholar 

  16. B. T. Koh and M. G. S. Yap. A simple genetically structured model of trp repressor-operator interactions. Biotechn. and Bioengineering, 41:707–714, 1993.

    Article  Google Scholar 

  17. A. Kröner, P. Holl, W. Marquardt, and E.D. Gilles. DIVA—An Open Architecture for Dynamic Simulation. Comput. Chem. Engng., 14:1289–1295, 1990.

    Article  Google Scholar 

  18. H.H MacAdams and L. Shapiro. Circuit simulation of genetic networks. SIENCE, 296:253–262, 1995.

    Google Scholar 

  19. W. Marquardt. Trends in computer-aided process modeling. In Proc. of the 5 th intl. Symp. on Process Systems Engineering, PSE 1994, May 30–June 3, pages 1–24, Kyongju, Korea, 1994.

    Google Scholar 

  20. W. Mavrovouniotis. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem. Eng. Science, 5(9):1495–1507, 1996.

    Article  Google Scholar 

  21. C.C. Pantelides. SPEEDUP: Recent Advances in Process Engineering. Comput. Chem. Engn., 12:745–755, 1988.

    Article  Google Scholar 

  22. D. Ramkrishna. The status of population balances. Chem. Eng. Comm., 3:49–95, 1985.

    Google Scholar 

  23. R. Rand and D. Armbruster. Pertubation Methods, Bifurcation Theory and Computer Algebra. Springer, New York, 1987.

    Google Scholar 

  24. M. A. Savageau.A kinetic formalism for integrative molecular biology.In B. Magasanik J. Collado and T. Smith, editors, Integrative Approaches to Molecular Biology. MIT Press, 1996.

    Google Scholar 

  25. L.A. Segel and M. Shemrod. The quasi steady-state assumption: A case study in pertubation. SIAM Review, 31(3):446–477, 1989.

    Article  Google Scholar 

  26. G. Stephanopoulos, G. Henning, and H. Leone. MODEL.LA: A modeling langugage for process engineering. Part I: The formal framework. Part II: Multi-facetted modeling of processing systems. Comput. Chem. Engn., 14:813–869, 1990.

    Article  Google Scholar 

  27. H. J. Stoffers, E. L. L. Sonnhammer, G. J. F. Blommestijn, N. J. H. Raat, and H. V. Westerhoff. METASIM: Object-oriented modeling of cell regulation. Comput. Appl. in the Biosciences, 8:443–449, 1992.

    Google Scholar 

  28. G. Subramanian and Ramkrishna. On the solution of statistical models of cell populations. Math. Biosci., 10:1–23, 1971.

    Article  Google Scholar 

  29. F. Tränkle, G. Gerstlauer, M. Zeitz, and E.D. Gilles. Application of the Modeling and Simulation Environment PROMOT/DIVA to the Modeling of Distillation Processes. accepted for PSE'97, ESCAPE-7 Trondheim, Norway, May 26–29, 1997.

    Google Scholar 

  30. F. Tränkle, G. Gerstlauer, M. Zeitz, and E.D. Gilles. PROMOT/DIVA: A Prototye of a Process Modeling and Simulation Environment. accepted for 2 nd MATH-MOD Vienna, Austria, Feb. 5–7,1997.

    Google Scholar 

  31. S. Wolfram. Mathematica — A System for Doting Mathematics by Computer. Addison Wesley, 2nd edition, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralf Hofestädt Thomas Lengauer Markus Löffler Dietmar Schomburg

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breuel, G., Gilles, E.D. (1997). Towards an object-oriented framework for the modeling of integrated metabolic processes. In: Hofestädt, R., Lengauer, T., Löffler, M., Schomburg, D. (eds) Bioinformatics. GCB 1996. Lecture Notes in Computer Science, vol 1278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033207

Download citation

  • DOI: https://doi.org/10.1007/BFb0033207

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63370-9

  • Online ISBN: 978-3-540-69524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics