Skip to main content

The complexity of error-correcting codes

  • Invited Lectures
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1279))

Included in the following conference series:

Abstract

By concatenating linear-time codes with small, good codes, it is possible to construct in polynomial time a family of asymptotically good codes that approach the Shannon bound that can be encoded and decoded in linear time. Moreover, their probability of decoder error is exponentially small in the block length of the codes. In this survey, we will explain exactly what this statement means, how it is derived, and what problems in the complexity of error-correcting codes remain open. Along the way, we will survey some key developments in the complexity of error-correcting codes.

We should point out that, at the present time, almost every implementation of error-correcting codes uses special-purpose hardware. Moreover, coding schemes that are efficient in software can be inefficient in hardware, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms. Addison-Wesley series in computer science and information processing. Addison-Wesley, Reading, Massachusetts, 1974.

    Google Scholar 

  2. N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory, 38(2):509–516, March 1992.

    Article  Google Scholar 

  3. R. B. Ash. Information Theory. Dover Publications, Inc., New York, 1965.

    Google Scholar 

  4. L. A. Bassalygo, V. V. Zyablov, and M. S. Pinsker. Problems of complexity in the theory of correcting codes. Problems of Information Transmission, 13(3):166–175, 1977.

    Google Scholar 

  5. P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic Complexity Theory. Springer Verlag, 1996.

    Google Scholar 

  6. G. C. Clark and J. B. Cain. Error-Correction Coding for Digital Communication. Plenum Press, New York, 1981.

    Google Scholar 

  7. P. Elias. Coding for noisy channels. IRE Conv. Record, 3:37–46, 1955.

    Article  Google Scholar 

  8. B. J. Frey and F. R. Kschischang. Probability propogation and iterative decoding. In Proc. 34-th Allerton Conference of Comma, Control, and Computing, pages 482–493, October 1996.

    Google Scholar 

  9. J. G. D. Forney. Concatenated Codes. The MIT Press, Cambridge, Massachusetts, 1966.

    Google Scholar 

  10. J. G. D. Forney. The forward-backward algorithm. In Proc. 34-th Allerton Conference of Comm., Control, and Computing, pages 432–446, October 1996.

    Google Scholar 

  11. R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.

    Google Scholar 

  12. S. I. Gelfand, R. L. Dobrushin, and M. S. Pinsker. On the complexity of coding. In Second International Symposium on Information Theory, pages 177–184, Akademiai Kiado, Budapest, 1973.

    Google Scholar 

  13. J. Justesen. A class of constructive asymptotically good codes. IEEE Transactions on Information Theory, 18:652–656, 1972.

    Article  Google Scholar 

  14. J. Justesen. On the complexity of decoding Reed-Solomon codes. IEEE Transactions on Information Theory, 22(2):237–238, March 1976.

    Article  Google Scholar 

  15. W. Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theoretical Computer Science, 36(2-3):309–317, Apr. 1985.

    Article  Google Scholar 

  16. A. Kolmogorov and V. Uspenskii. On the definition of an algorithm. Uspchi Math. Nauk, 13(4):3–28, 1958. English translation in [17].

    Google Scholar 

  17. A. Kolmogorov and V. Uspenskii. On the definition of an algorithm. American Mathematical Society Translations, 29:217–245, 1963.

    Google Scholar 

  18. J. D. Lafferty and D. N. Rockmore. Spectral techniques for expander codes. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 160–167, 1997.

    Google Scholar 

  19. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

    Article  Google Scholar 

  20. D. J. C. MacKay and R. M. Neal. Near shannon limit performance of low-density parity-check codes. Elect. Lett., to appear, 1997.

    Google Scholar 

  21. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland, Amsterdam, 1977.

    Google Scholar 

  22. G. A. Margulis. Explicit group theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators. Problems of Information Transmission, 24(1):39–46, July 1988.

    Google Scholar 

  23. J. L. Massey. Threshold Decoding. The MIT Press, Cambridge, Massachusetts, 1973.

    Google Scholar 

  24. R. J. McEliece, E. R. Rodemich, H. C. Rumsey, and L. R. Welch. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Transactions on Information Theory, 23:157–166, 1973.

    Article  Google Scholar 

  25. V. Y. Pan. Faster solution of the key equation for decoding BCH error-correcting codes. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 168–175, 1997.

    Google Scholar 

  26. W. W. Peterson and J. E. J. Weldon. Error-Correcting Codes. The MIT Press, Cambridge, Massachusetts, 1972.

    Google Scholar 

  27. F. Preparata and D. Sarwate. Computational complexity of Fourier transforms over finite fields. Mathematics of Computation, 31(139):740–751, July 1977.

    Google Scholar 

  28. D. V. Sarwate. On the complexity of decoding Goppa codes. IEEE Transactions on Information Theory, 23(4):515–516, July 1977.

    Article  Google Scholar 

  29. J. E. Savage. The complexity of decoders-part I. Decoder classes. IEEE Transactions on Information Theory, 15:689–695, November 1969.

    Article  Google Scholar 

  30. J. E. Savage. The complexity of decoders-part II: Computational work and decoding time. IEEE Transactions on Information Theory, 17(1):77–85, January 1971.

    Article  Google Scholar 

  31. J. E. Savage. The Complexity of Computing. John Wiley & Sons, 1976.

    Google Scholar 

  32. C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423, July 1948.

    Google Scholar 

  33. M. Sipser and D. A. Spielman. Expander codes. In Proceedings of the 35th IEEE Symposium on Foundations of Computer Science, pages 566–576, 1994.

    Google Scholar 

  34. M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information Theory, 42(6):1710–1722, 1996. preliminary version appeared as [33].

    Article  Google Scholar 

  35. D. A. Spielman. Computationally efficient error-correcting codes and holographic proofs. PhD thesis, M.I.T., May 1995. Available at http://www-math.mit.edu/~spielman.

    Google Scholar 

  36. D. A. Spielman. Linear-time encodable and decodable error-correcting codes. In Proceedings of the,27th Annual ACM Symposium on Theory of Computing, pages 388–397, 1995.

    Google Scholar 

  37. D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions on Information Theory, 42(6):1723–1731, 1996. preliminary version appeared as [36].

    Article  Google Scholar 

  38. V. Strassen. The computational complexity of continued fractions. SIAM J. Comput., 12(1):1–27, February 1983.

    Article  Google Scholar 

  39. R. M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 27(5):533–547, September 1981.

    Article  Google Scholar 

  40. J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992.

    Google Scholar 

  41. A. Vardy. Algorithmic complexity in coding theory and the minimum distance problem. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 92–109, 1997. 42. A. J. Viterbi and J. K. Omura. Principles of Digital Communication and Coding. McGraw-Hill, 1979.

    Google Scholar 

  42. N. Wiberg. Codes and decoding on general graphs. PhD thesis, University of Linköping, Sweden, 1996.

    Google Scholar 

  43. N. Wiberg, H.-A. Loeliger, and R. Kötter. Code and iterative decoding on general graphs. Euro. Trans. Telecommun., 6:513–526, 1995.

    Google Scholar 

  44. V. V. Zyablov and M. S. Pinsker. Estimation of the error-correction complexity of Gallager low-density codes. Problems of Information Transmission, 11(1):18–28, May 1976. *** DIRECT SUPPORT *** A0008123 00003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bogdan S. Chlebus Ludwik Czaja

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spielman, D.A. (1997). The complexity of error-correcting codes. In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036172

Download citation

  • DOI: https://doi.org/10.1007/BFb0036172

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63386-0

  • Online ISBN: 978-3-540-69529-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics