Skip to main content

An optimal algorithm for computing visible nearest foreign neighbors among colored line segments

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

  • 128 Accesses

Abstract

Given a set S of n colored line segments in ℝ2 that may intersect only in endpoints. Let c(u) denote the color of a line segment u ∃ S chosen from χ ≤ n different colors. A line segment v ∃ S is a visible nearest foreign neighbor of u ∃ S if v is a nearest foreign neighbor of u in S, i.e. c(u) ≠ c(v) and no segment with a color different from c(u) is closer to u than v, and if there exist points u' ∃ u and v' ∃ v realizing the distance between u and v that are visible for each other, i.e. the open segment connecting u' and v' is not intersected by an open line segment in S. We present the first optimal θ(n log n) algorithm that computes for each line segment u ∃ S all its visible nearest foreign neighbors. The algorithm finds applications in polygon arrangement analysis, VLSI design rule checking and GIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, H. Edelsbrunner, P. Raghavan, and P. Tiwari. Optimal time bounds for some proximity problems in the plane. Inform. Process. Lett, 42(1):55–60, 1992.

    Article  MathSciNet  Google Scholar 

  2. F. Bartling and K. Hinrichs. A plane-sweep algorithm for finding a closest pair among convex planar objects. In Proc. 9th Sympos. Theoret. Aspects Comput. Sci., volume 577 of Lecture Notes in Computer Science, pages 221–232. Springer-Verlag, 1992.

    Google Scholar 

  3. J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput., C-28:643–647, 1979.

    Google Scholar 

  4. C. Brunikel, K. Mehlhorn, and S. Schirra. How to compute the voronoi diagram of Une segments: Theoretical and experimental results. In Proc. European Symposium on Algorithms, volume 855 of Lecture Notes in Computer Science, pages 227–239. Springer-Verlag, 1994.

    Google Scholar 

  5. S. Fortune. Numerical stability of algorithms for 2-d Delaunay triangulations and Voronoi diagrams. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 83–92, 1992.

    Google Scholar 

  6. S. Fortune and V. Milenkovic. Numerical stability of algorithms for line arrangements. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 334–341, 1991.

    Google Scholar 

  7. S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Graf and K. Hinrichs. Algorithms for proximity problems on colored point sets. In Proc. 5th Canad. Conf. Comput. Geom., pages 420–425, Waterloo, Canada, 1993.

    Google Scholar 

  9. T. Graf and K. Hinrichs. A plane-sweep algorithm for the all-nearest-neighbors problem for a set of convex planar objects. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer Science, pages 349–360. Springer-Verlag, 1993.

    Google Scholar 

  10. T. Graf and K. Hinrichs. Distribution algorithms for the all-nearest-foreignneighbors problem in arbitrary Lt metrics. In Proc. 6th Canad. Conf. Comput. Geom., pages 69–74, 1994.

    Google Scholar 

  11. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28–35, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Masser and M. Blakemore, editors. Handling geographical information: methodology and potential applications. Long Scientific &: Technical, 1991.

    Google Scholar 

  13. M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discrete Comput. Geom., 15:73–105, 1996.

    MathSciNet  Google Scholar 

  14. K. Mehlhorn and S. NÄher. Implementation of a sweep line algorithm for the straight line segment intersection problem. Report MPI-I-94-160, Max-Planck-Institut Inform., Saarbrücken, Germany, 1994.

    Google Scholar 

  15. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  16. J. D. Ullman. Computational Aspects of VLSI Design. Computer Science Press Inc., Maryland, 1984.

    Google Scholar 

  17. C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom., 2:365–393, 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graf, T., Veezhinathan, K. (1998). An optimal algorithm for computing visible nearest foreign neighbors among colored line segments. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054355

Download citation

  • DOI: https://doi.org/10.1007/BFb0054355

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics