Skip to main content

A psychophysical approach to the mechanism of human stereovision

  • Artificial Intelligence and Cognitive Neuroscience
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

  • 523 Accesses

Abstract

Binocular complex cells in primary visual cortex encode disparity based on their spatio-temporal receptive field structure. A probabilistic neural network model based on pre-tuned estimators is proposed as general mechanism of stereovision in VI. Temporal and spatial features of stereopsis were studied with single image random dot stereograms (SIRDS). Results: Discrimination threshold of two transparent surfaces in a stereogram depends on disparity of each surface as well as the spatial frequency content. Repeated brief exposures (13.4ms) to stereogram against noise or another stereogram do not disturb stereopsis, even when mask intervals are 53ms (P<0.01). With repeated exposures to longer duration (53ms), subjects performed better than expected by temporal averaging (P<0.01). New findings are discussed on the framework of the model. It was concluded that 1. Disparity estimators are arranged in layers according to their preferred spectral and disparity-selectivity, and 2. Stereopsis has two temporal steps: first local estimates are detected (local stereopsis), and then coherence between different disparity estimators is detected (global stereopsis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yeh, Y., Silverstein, L. D., SID International Symposium Digest of Technical Papers 21: 359–62, 1990.

    Google Scholar 

  2. Dhond, U. R., Aggarwal, J. K., IEEE Trans. Syst., Man and Cybern. 19: 1489–1510, 1989.

    Article  Google Scholar 

  3. Nasrabadi, N. M., Liu, Y., Intl. Joint Conference on Neural Networks, vol. 2, p 573, 1989.

    Google Scholar 

  4. Ohzawa, I., DeAngelis, G. C., Freeman, R. D., J. Neurophysiology 75: 1779–1805, 1996.

    Google Scholar 

  5. Quin, N., Neural Comp. 6: 390–404, 1994.

    Article  Google Scholar 

  6. Rogers, B. J., In Orban, G. A., Nagel, H. H. (Eds.), Artificial and Biological Vision Systems. Springer-Verlag NY, 1992.

    Google Scholar 

  7. Fender, D., Julesz, B., J Opt. Soc. Am. 57: 819–30, 1967.

    Article  Google Scholar 

  8. Tyler, C. W., Science 181, 276–8, 1973.

    Article  Google Scholar 

  9. B. G. Cumming, E. B. Johnston, A. J. Parker. Nature 349, 411–13, 1991.

    Article  Google Scholar 

  10. W. Tyler, L. L. Kontsevich. Perception 24: 127–53, 1995.

    Article  Google Scholar 

  11. Mansfield JS, Legge GE. Vision Res 36(1): 27–41, 1996.

    Article  Google Scholar 

  12. S. R. Lehky, T. J. Sejnowski. J. Neurosci. 10: 2281–99, 1990.

    Google Scholar 

  13. Belhumeur, P. N., Intl. J. Comp. Vision 19 (3): 237–62, 1996.

    Article  Google Scholar 

  14. Marr, D., Vision, pp. 116–55, W. H. Freeman and Co. NY. 1982.

    Google Scholar 

  15. Ohzawa, I., DeAngelis, G. C., Freeman, R. D., J. Neurophysiology 75: 1779–1805, 1996.

    Google Scholar 

  16. Poggio, G. F., Motter, B. C., Squatrito, S., Trotter, Y., Vision Research 25: 397–406, 1985.

    Article  Google Scholar 

  17. Quin, N., Zhu, Y., To appear in Vision Research, 1997.

    Google Scholar 

  18. Bishop, P. O., Pettigrew, J. D., Vision Research 26: 1587–1600, 1986.

    Article  Google Scholar 

  19. Ohzawa, I., DeAngelis, G. C., Freeman, R. D., J Neurophysiol. 77(6): 2879–909, 1997.

    Google Scholar 

  20. Blake, R., Cormack, R. H., Vision Research 19: 913–15, 1979.

    Article  Google Scholar 

  21. Stelmach, Lew B., Tam, Wa James. Proc. of SPIE-Intl. Soc. Optical Eng. v 2657: 302–306, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA. 1996.

    Google Scholar 

  22. Gonzalez, F., Perez, R., Prog Neurobiol 55(3): 191–224, 1998.

    Article  Google Scholar 

  23. He, S., Zhuang, J., Mansfield, J. S., Hu, X., Submited abstract to ARVO, 1999.

    Google Scholar 

  24. Roelfsema, Pieter R., Lamme, V. A. F., Sperkrejse, H., Nature 395:24 376–381, 1998.

    Article  Google Scholar 

  25. K. Nakayama, S. Shimojo. Invest. Ophtalmol. Vis. Sci. (Supp.) 32(4): 694, 1991.

    Google Scholar 

  26. Henkel, R. D., in Proc. of CAIP’97, Kiel, LCNS 1296, eds. G. Sommer, K. Daniilidis, J. Pauli, p 297, Springer, Heidelberg, 1997.

    Google Scholar 

  27. Mallot, H. A., Gillner, S, Arndt, A. P., Technical Report No. 4, Max-Planck-Institut fur biologische Kybernetik, Arbeitsgruppe Bulthoff, 1994.

    Google Scholar 

  28. Cogan, A. I., Kontsevich, L. L., Lomakin, A. J., Halpern, D. L., Blake, R., Perception 24: 33–47, 1995.

    Article  Google Scholar 

  29. Mallot, H. A., P. A. Arndt, H. Bulthoff. Technical Report No. 18, Max-Planck-Institut fur biologische Kybernetik, Arbeitsgruppe Bulthoff, 1995.

    Google Scholar 

  30. Julesz, B., Miller, J. E., Perception 4: 125–43, 1975.

    Article  Google Scholar 

  31. Langley, K., Fleet, D. J., Hibbard, P. B., Proc. Royal Soc. London B. 265: 1837–45, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moradi, F. (1999). A psychophysical approach to the mechanism of human stereovision. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098236

Download citation

  • DOI: https://doi.org/10.1007/BFb0098236

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics