Skip to main content

Computational aspects of multi-species lattice-gas automata

  • Track C2: Computational Science
  • Conference paper
  • First Online:
High-Performance Computing and Networking (HPCN-Europe 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1593))

Included in the following conference series:

Abstract

We present computational aspects of a parallel implementation of a multi-species thermal lattice gas. This model, which can be used to simulate reaction-diffusion phenomena in a mixture of different fluids, is analyzed for a fluid system at global equilibrium. Large system sizes combined with long-time simulation makes parallelization a necessity. We show that the model can be easily parallelized, and possesses good scalability. Profiling information shows the random number generator has become a bottleneck. The model can be statistically analyzed by calculating the dynamic structure factor S(k ω). As an illustration, we measure S(k, ω) for a one-component system, and extract the values of transport coefficients from the spectra. Finally, S(k, ω) is shown for a two-component thermal model, where the central peak is more complicated, due to the coupled entropy-concentration fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D H. Rothman and S. Zaleski. Lattice gas cellular automata. Cambridge University Press, 1997.

    Google Scholar 

  2. D. d'Humières, P. Lallemand, and U. Frisch. Lattice gas models for 3-d hydrohynamics. EuroPhys. Lett., 2:291–297, 1986.

    Google Scholar 

  3. K. Diemer, K. Hunt, S. Chen, T. Shimomura, and G. Doolen. Velocity dependence of reynolds numbers for several lattice gas models. In Doolen, editor, Lattice Gas Methods for Partial Differential Equations, pages 137–178. Addison-Wesley, 1990.

    Google Scholar 

  4. U. Frish, D. d'Humières, B. Hasslacher P. Lallemand, Y. Pomeau, and J.P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex systems, 1:649–707, 1987.

    MathSciNet  Google Scholar 

  5. U. Frish, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-stokes equation. Physical Review Letters, 56:1505, April 1986.

    Article  Google Scholar 

  6. P. grosfils, J.P. Boon, and P. Lallemand. Spontaneous fluctuation correlations in thermal lattice-gas automata. Physical Review Letters, 68:1077–1080, 1992.

    Article  Google Scholar 

  7. P. grosfils, J.P. Boon, R. Brito, and M.H. Ernst. Statistical hydrodynamics of lattice-gas automata. Physical Review E, 48:2655–2668, 1993.

    Article  Google Scholar 

  8. D. Hanon and J.P. Boon. Diffusion and correlations in lattice-gas automata. Physical Review E, 56:6331–6339, 1997.

    Article  Google Scholar 

  9. J.P. Boon and S. Yip: Molecular Hydrodynamics. McGraw-Hill, New York, 1980.

    Google Scholar 

  10. M. Hénon. Isometric collision rules for the four-dimensional fchc lattice gas. Complex Systems 1, pages 475–494, 1987.

    MathSciNet  Google Scholar 

  11. Copyright (C) 1998 Massachusetts Institute of Technology. The fastest fourier transform in the west. http://theory.lcs.mit.edu.

    Google Scholar 

  12. University of Chicago and Mississippi State University. Mpich. http://www.mcs.anl.gov/mpich/.

    Google Scholar 

  13. D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P.M.A. Sloot. Lattice-boltzmann hydrodynamics on parallel systems. Computer Physics Communications, 111:14–26, 1998.

    Article  Google Scholar 

  14. D. Kandhai, D. Dubbeldam, A.G. Hoekstra, and P.M.A. Sloot. Parallel latticeboltzmann simulation of fluid flow in centrifugal elutriation chambers. In Lecture Notes in Computer Science, number 1401, pages 173–182. Springer-Verlag, 1998.

    Google Scholar 

  15. W.H. Press, B.P. Flanney, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.

    Google Scholar 

  16. S.M. Ross. A course in Simulation. Maxwell Macmillian, New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dubbeldam .

Editor information

Peter Sloot Marian Bubak Alfons Hoekstra Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Dubbeldam, D., Hoekstra, A.G., Sloot, P.M.A. (1999). Computational aspects of multi-species lattice-gas automata. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100595

Download citation

  • DOI: https://doi.org/10.1007/BFb0100595

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65821-4

  • Online ISBN: 978-3-540-48933-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics