Summary. We extend the idea of the post-processing Galerkin method, in the context of dissipative evolution equations, to the nonlinear Galerkin, the filtered Galerkin, and the filtered nonlinear Galerkin methods. In general, the post-processing algorithm takes advantage of the fact that the error committed in the lower modes of the nonlinear Galerkin method (and Galerkin method), for approximating smooth, bounded solutions, is much smaller than the total error of the method. In each case, an improvement in accuracy is obtained by post-processing these more accurate lower modes with an appropriately chosen, highly accurate, approximate inertial manifold (AIM). We present numerical experiments that support the theoretical improvements in accuracy. Both the theory and computations are presented in the framework of a two dimensional reaction-diffusion system with polynomial nonlinearity. However, the algorithm is very general and can be implemented for other dissipative evolution systems. The computations clearly show the post-processed filtered Galerkin method to be the most efficient method.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received September 10, 1998 / Revised version received April 26, 1999 / Published online July 12, 2000
Rights and permissions
About this article
Cite this article
Novo, J., Titi, E. & Wynne, S. Efficient methods using high accuracy approximate inertial manifolds. Numer. Math. 87, 523–554 (2001). https://doi.org/10.1007/PL00005423
Issue Date:
DOI: https://doi.org/10.1007/PL00005423