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Abstract. This paper gives simple proofs for “G* € .« implies G**! € ./ when .« is the
family of all interval graphs, all proper interval graphs, all cocomparability graphs, or all
m-trapezoid graphs.

1. Introduction

In a graph G = (V,E), the distance dg(x,y) between two vertices x and y is the
minimum number of edges in an x-y path; dg(x,y) = oo if there exists no x-y path.
For a positive integer k, the kth power of a graph G = (V,E) is the graph
G = (V,EF) whose vertex set is V' and edge set EF = {xy: 1 < dg(x,y) < k}.

Powers of graphs have been studied from different points of view. For in-
stance, researchers are interested in knowing which families of graphs are closed
under taking powers. Well-known families of this kind are interval graphs, proper
interval graphs, strongly chordal graphs, circular-arc graphs, cocomparability
graphs among others. A more general question is, for a family .o/ of graphs,
whether G* € .o/ implies G¥! € .o7.

The first surprising result in this line was given by Lubiw [18], who proved that
powers of strongly chordal graphs are strongly chordal. Hoffman et al. [14] gave a
simple proof of this result. Knowing a similar result is impossible for chordal
graphs, Chang and Nemhauser [3] showed that if G and G? are chordal then so are
all powers of G. On the other hand, Balakirishnan and Paulraja [2] proved that
odd powers of chordal graphs are chordal. An even more interesting result, with
an elegant proof, was given by Duchet [10] that if G* is chordal then so is GF2.

Since then, many authors worked on the problem ‘““‘whether G* € .o/ implies
G ¢ o7 for various families .. Typical examples are strongly chordal graphs
[21], interval graphs [20], proper interval graphs [20], m-trapezoid graphs [11],
cocomparability graphs [11]. Most of them are proved in some clever, but slightly
complicated ways. The main effort of this paper is to give simple proofs for
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interval graphs, proper interval graphs, cocomparability graphs, and m-trapezoid
graphs by a “vertex ordering” methodology.

2. Powers of Graphs

The concept of intersection graphs plays an important role in graph theory. The
intersection graph of a family # of sets is the graph whose vertices have a one-to-one
correspondence to the sets in %, and two distinct vertices are adjacent if and only if
their corresponding sets intersect. In this definition, % is called an intersection
model of its intersection graph. It is an easy exercise to show that any graph is the
intersection graph of some family of sets. However, if the sets in & have special
structures, then its intersection graph is usually well-behaved. Recently intersection
graphs of the following objects have been studied extensively by many authors:
intervals on the real line, boxes (balls) in the n-dimensional Euclidean space, arcs in
a circle, trapezoids between two parallel lines on a plane, to name a few.

Among these, interval graphs, which are intersection graphs of intervals on the
real line, have been most extensively studied not only because they are well-
behaved, but also because they are applicable to many fields such as biology and
computer science, e.g., see [24]. For studying the domination problem, Ramalin-
gam and Pandu Rangan [19] gave that a graph G is an interval graph if and only if it
has an interval ordering, which is an ordering of V(G) into [v;, vy, ..., v,] such that

i<f<j and wvv; € E(G) imply vv; € E(G).

This can be seen by sorting the right endpoints of intervals correspondent to the
vertices of the interval graph. Using this, we now give an alternative proof for
Raychaudhuri’s [20] result on interval graphs.

Theorem 1. Suppose G is a graph and k a positive integer. If G is an interval graph,
then so is G**1.

Proof. Let [v1,vs,...,0,] be an interval ordering of G*. Consider G**! and the
ordering [v1,vs,...,v,]. Suppose i < ¢ < j and vv; € E(GH), ie., dg(vi,v;) <
k+ 1. If dg(v;,v;) <k, then vv; € E(GX) and so vw; € E(GY) C E(GF!). Now,
suppose dg(v;,v;) =k + 1. Let P be a shortest v;-v; path in G and let v, be the
vertex adjacent to v; on P. Then, dg(v;, v,) = k and dg (v, v;) = 1. So, vv, € E(G¥)
and v,v; € E(GF). If i < £ < a, then v, € E(G*) and so dg(ve,v;) < dg(ve,v4)+
dg(va,v;) < k+1.1f a < € < j, then vw; € E(G) C E(G*1). Therefore, vv; € E
(G**1) in any case. Hence, [v1, 02, .. .,0,] is an interval ordering of G**! and G**!
is an interval graph. ]

Corollary 2. Powers of interval graphs are interval graphs.

A proper interval graph is an interval graph with an interval model in which no
interval is a proper subset of another interval. Ding [9] and Roberts [23] proved



Families of Graphs Closed Under Taking Powers 209

that a graph is a proper interval graph if and only if it has an proper interval
ordering, which is an ordering of its vertex set into [vj,vy,...,v,] such that
[v1,v2,...,0,) and [v,,0,—1,...,01] are interval orderings, or equivalently,

i <{¢ < jand vyv; € E(G) imply v, € E(G) and vv; € E(G).

Using this, we have The following simple proof for Raychaudhuri’s [20] result
on proper interval graphs.

Theorem 3. Suppose G is a graph and k a positive integer. If G* is a proper interval
graph, then so is G+

Proof. Let [vj,va,...,0,] be a proper interval ordering of G, ie., both
[v1,02,...,0,] and [v,,V,s1,...,v1] are interval orderings of G*. By the same ar-
guments used in the proof of Theorem 1, we have that both [vy,v,,...,0,] and
[Un; Uu_1, ..., v1] are interval orderings of G**!. Hence, G¥*! is a proper interval
graph. Ol

Corollary 4. Powers of proper interval graphs are proper interval graphs.

A comparability graph is the underlying graph of an acyclic transitive digraph,
which can be viewed as a poset. In other words, a graph G is comparability if it
has a transitive ordering that is an ordering of V(G) into [v;, va, ..., v,] such that

i << jand vy, v; € E(G) imply vv; € E(G).

A cocomparability graph is the complement of a comparability graph, i.e., it has a
cocomparability ordering that is an ordering of its vertex set into [v;, v2, ..., v,] such
that

i < { < jand vyv; € E(G) imply viv, € E(G) or v, € E(G).

Cocomparability graphs include interval graphs and m-trapezoid graphs defined
below. Flotow [11] proved the following result for cocomparability graphs by
means of m-trapezoid graphs. We now give a simple and direct proof.

Theorem 5. Suppose G is a graph and k a positive integer. If G* is a cocomparability
graph, then so is GF1.

Proof. Let [v1,02,...,0,] be a cocomparability ordering of G*. Consider G**! and
the ordering [vj,vs,...,0,]. Suppose i<{¢<j and uvu; € E(G), ie.,
de(vi,v;) < k+ 1. If dg(v;,v;) <k, then v;v; € E(GY), which implies that either
vivg € E(G*) CE(G) or vw; € E(GY) C E(GM!). Now, suppose dg(vi,v;) =
k+1. Choose a vertex v, such that dg(v;,v,) =k and dg(ve,v;) = 1. Then,
vivg € E(GX) and v, € E(GF). If i</{<a, then either dg(v;,v)) <k or
dg(vs,v,) < k. For the former case, vv, € E(G) C E(G**!); for the latter case,
de(ve,v;) < dg(ve,va) + d(va, v;) < k+ 1 and so vw; € E(GH1). If a < £ < j, then
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either  dg(vs,00) <k or  dg(v,v;) <k For the former case,
dc(ve,v;) < dg(va,ve) +dg(ve,v;) <k+1 and so vw; € E(GF); for the latter
case, vv; € E(GY) C E(GF!). Hence, in any case, [v1,02,...,0,] is a cocompara-
bility ordering of G¥*! and G*! is a cocomparability graph. O

Corollary 6. Powers of cocomparability graphs are cocomparability.

Although, the result for cocomparability graphs can be proved without using
m-trapezoid graphs, the result for m-trapezoid graphs has its own interest. As the
final part of this paper, we also give a new proof for the result on m-trapezoid
graphs.

Suppose m > 0 and Ly, Ly,...,L, are m+ 1 parallel lines, indexed to their
ordering, in the plane. Suppose [a;, b;] is an interval in L; for 0 < i < m. These
intervals define an m-trapezoid that is the region bounded by the polygon
Ao, a1y -y Ay by, b1, ... by, ag. An m-trapezoid graph is the intersection graph
of m-trapezoids over m + 1 parallel lines in the plane. Without loss of generality,
we may assume that all right endpoints b;’s for different m-trapezoids are distinct.
Note that 0-trapezoid graphs are precisely interval graphs; 1-trapezoid graphs are
the usual trapezoid graphs, which include permutation graphs; and m-trapezoid
are precisely comparability graphs of posets with interval dimension at most
m+ 1 (see [11, 25)).

Lemma 7. A4 graph G = (V,E) is an m-trapezoid graph if and only if it has a family
of m-trapezoid orderings that is a set {<¢,<i,...,<m} of m+ 1 orderings of V such
that the following two conditions hold for all vertices x and y.

(T1(x,y,G)) If x and y disagree in two orderings <; and <; (i.e., x <; y but
y<; xorx<;ybuty<;x), thenxy € E.
(T2(x,y,G)) If x and y agree in all orderings (say, x <y y for all {) and xy € E,

then there exists some i* such that x < z <; y implies zy € E.

Proof. (=) Suppose G is an m-trapezoid graph whose m-trapezoid representa-
tion is over the parallel lines Ly, L, ..., L,. For each vertex v € V, let [a}, b}] be the
interval for the m-trapezoid of v in ;. Define an ordering <; of V' by

(2.1) x <; y if and only if b7 < b}.

It is straightford to check that the two conditions (T1) and (T2) hold.

(<) Conversely, suppose G has a family of m-trapezoid orderings
{<0,<1,-.-,<m}. Construct m + 1 parallel lines Ly, Ly,..., L,. For any vertex
v € V and any line L;, choose 5! such that (2.1) holds. Define

a; =min({b} U {d} :xv € E, x <; v, and zv € E whenever x <; z <; v}).

Then the |V| m-trapezoids defined by the intervals [a?, 5!] determine an m-trape-
zoid graph, which can be verified to be the graph G. O
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Theorem 8. Suppose G is a graph and k a positive integer. If G* is an m-trapezoid
graph, then so is GF1.

Proof. Let {<,<1,...,<n} be a family of m-trapezoid orderings of G*. Consider
G and the family {<, <, ..., <u}. Since (T1(x, y, G¥)) holds for all x and y and
E(G") C E(GH), (T1(x,y, G**1)) holds for all x and y. For (T2(x, y, G**1)), sup-
pose x <, y for all £ and xy € E(GF"!). Choose a vertex w such that dg(x,w) < k
and dg(w,y) = 1.

Note that either w <; x for some i or x <, w for all /. For the former case,
choose i* = i. For the later case, (T2(x, w, G")) holds for some <;: and we choose
i* = i]. In either case, consider any z with x <;» z <;» y. If z and y disagree in two
orderings, then (T1(z,y, GF)) implies zy € E(G¥) C E(G*!). So we may assume
that z and y agree in all orderings. If z and w disagree in two orderings, then
(T1(z, w, G¥)) implies zw € E(G*) and so zy € E(G**!). So we may assume that z
and w agree in all orderings.

Case 1. w <; x for some i and i* = i.

As w <;x <;z <;y, we have w <, z <, y for all £. Since wy € E(G) C E(G"),
(T2(w,y, G")) holds for some #;. In this case, zy € E(G*) C E(GF).

Case 2. x <, wfor all £ and i* = i}.

In this case, x <pz<gworz=worw <;z<g y. For the case of x <ip z <;; w,
(T2(x, w, G¥)) implies we E(G*) and so zy € E(Gk“) For the case of z = w,
zy = wy € E(G) C E(G"'"). For the case of w <;: z < y, we have w <,z <; y for
all £ and so (T2(w, y, G¥)) holds for some i, which 1mp11es zy € E(GF) C E(GF).

In any case, (T2(x,y, G**1)) holds. Hence {<o,<i,...,<n} is a family of m-
trapezoid orderings for G**! and G**! is an m-trapezoid graph. O

Corollary 9. Powers of trapezoid graphs are trapezoid graphs.

In fact, Theorems 1 and 5 also follow from Theorem 8.
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