© Springer-Verlag 2001

Families of Graphs Closed Under Taking Powers*

Mingjang Chen¹ and Gerard J. Chang²

Department of Applied Mathematics, National Chiao Tung University. Hsinchu 30050, Taiwan, R.O.C. ¹e-mail: mjchen@cc.nctu.edu.tw; ²e-mail: gjchang@math.nctu.edu.tw

Abstract. This paper gives simple proofs for " $G^k \in \mathscr{A}$ implies $G^{k+1} \in \mathscr{A}$ " when \mathscr{A} is the family of all interval graphs, all proper interval graphs, all cocomparability graphs, or all m-trapezoid graphs.

1. Introduction

In a graph G = (V, E), the distance $d_G(x, y)$ between two vertices x and y is the minimum number of edges in an x-y path; $d_G(x, y) = \infty$ if there exists no x-y path. For a positive integer k, the kth power of a graph G = (V, E) is the graph $G^k = (V, E^k)$ whose vertex set is V and edge set $E^k = \{xy : 1 \le d_G(x, y) \le k\}$.

Powers of graphs have been studied from different points of view. For instance, researchers are interested in knowing which families of graphs are closed under taking powers. Well-known families of this kind are interval graphs, proper interval graphs, strongly chordal graphs, circular-arc graphs, cocomparability graphs among others. A more general question is, for a family $\mathscr A$ of graphs, whether $G^k \in \mathscr A$ implies $G^{k+1} \in \mathscr A$.

The first surprising result in this line was given by Lubiw [18], who proved that powers of strongly chordal graphs are strongly chordal. Hoffman et al. [14] gave a simple proof of this result. Knowing a similar result is impossible for chordal graphs, Chang and Nemhauser [3] showed that if G and G^2 are chordal then so are all powers of G. On the other hand, Balakirishnan and Paulraja [2] proved that odd powers of chordal graphs are chordal. An even more interesting result, with an elegant proof, was given by Duchet [10] that if G^k is chordal then so is G^{k+2} .

Since then, many authors worked on the problem "whether $G^k \in \mathcal{A}$ implies $G^{k+1} \in \mathcal{A}$ " for various families \mathcal{A} . Typical examples are strongly chordal graphs [21], interval graphs [20], proper interval graphs [20], m-trapezoid graphs [11], cocomparability graphs [11]. Most of them are proved in some clever, but slightly complicated ways. The main effort of this paper is to give simple proofs for

^{*} Supported in part by the National Science Council under grant NSC87-2115-M-009-007

interval graphs, proper interval graphs, cocomparability graphs, and *m*-trapezoid graphs by a "vertex ordering" methodology.

2. Powers of Graphs

The concept of intersection graphs plays an important role in graph theory. The *intersection graph* of a family \mathscr{F} of sets is the graph whose vertices have a one-to-one correspondence to the sets in \mathscr{F} , and two distinct vertices are adjacent if and only if their corresponding sets intersect. In this definition, \mathscr{F} is called an *intersection model* of its intersection graph. It is an easy exercise to show that any graph is the intersection graph of some family of sets. However, if the sets in \mathscr{F} have special structures, then its intersection graph is usually well-behaved. Recently intersection graphs of the following objects have been studied extensively by many authors: intervals on the real line, boxes (balls) in the *n*-dimensional Euclidean space, arcs in a circle, trapezoids between two parallel lines on a plane, to name a few.

Among these, *interval graphs*, which are intersection graphs of intervals on the real line, have been most extensively studied not only because they are well-behaved, but also because they are applicable to many fields such as biology and computer science, e.g., see [24]. For studying the domination problem, Ramalingam and Pandu Rangan [19] gave that a graph G is an interval graph if and only if it has an *interval ordering*, which is an ordering of V(G) into $[v_1, v_2, \ldots, v_n]$ such that

$$i < \ell < j$$
 and $v_i v_j \in E(G)$ imply $v_\ell v_j \in E(G)$.

This can be seen by sorting the right endpoints of intervals correspondent to the vertices of the interval graph. Using this, we now give an alternative proof for Raychaudhuri's [20] result on interval graphs.

Theorem 1. Suppose G is a graph and k a positive integer. If G^k is an interval graph, then so is G^{k+1} .

Proof. Let $[v_1, v_2, \ldots, v_n]$ be an interval ordering of G^k . Consider G^{k+1} and the ordering $[v_1, v_2, \ldots, v_n]$. Suppose $i < \ell < j$ and $v_i v_j \in E(G^{k+1})$, i.e., $d_G(v_i, v_j) \le k+1$. If $d_G(v_i, v_j) \le k$, then $v_i v_j \in E(G^k)$ and so $v_\ell v_j \in E(G^k) \subseteq E(G^{k+1})$. Now, suppose $d_G(v_i, v_j) = k+1$. Let P be a shortest $v_i \cdot v_j$ path in G and let v_a be the vertex adjacent to v_j on P. Then, $d_G(v_i, v_a) = k$ and $d_G(v_a, v_j) = 1$. So, $v_i v_a \in E(G^k)$ and $v_a v_j \in E(G^k)$. If $i < \ell < a$, then $v_\ell v_a \in E(G^k)$ and so $d_G(v_\ell, v_j) \le d_G(v_\ell, v_a) + d_G(v_a, v_j) \le k+1$. If $a < \ell < j$, then $v_\ell v_j \in E(G^k) \subseteq E(G^{k+1})$. Therefore, $v_\ell v_j \in E(G^{k+1})$ in any case. Hence, $[v_1, v_2, \ldots, v_n]$ is an interval ordering of G^{k+1} and G^{k+1} is an interval graph.

Corollary 2. Powers of interval graphs are interval graphs.

A proper interval graph is an interval graph with an interval model in which no interval is a proper subset of another interval. Ding [9] and Roberts [23] proved

that a graph is a proper interval graph if and only if it has an *proper interval* ordering, which is an ordering of its vertex set into $[v_1, v_2, \ldots, v_n]$ such that $[v_1, v_2, \ldots, v_n]$ and $[v_n, v_{n-1}, \ldots, v_1]$ are interval orderings, or equivalently,

$$i < \ell < j$$
 and $v_i v_i \in E(G)$ imply $v_i v_\ell \in E(G)$ and $v_\ell v_i \in E(G)$.

Using this, we have The following simple proof for Raychaudhuri's [20] result on proper interval graphs.

Theorem 3. Suppose G is a graph and k a positive integer. If G^k is a proper interval graph, then so is G^{k+1} .

Proof. Let $[v_1, v_2, \ldots, v_n]$ be a proper interval ordering of G^k , i.e., both $[v_1, v_2, \ldots, v_n]$ and $[v_n, v_{n+1}, \ldots, v_1]$ are interval orderings of G^k . By the same arguments used in the proof of Theorem 1, we have that both $[v_1, v_2, \ldots, v_n]$ and $[v_n, v_{n-1}, \ldots, v_1]$ are interval orderings of G^{k+1} . Hence, G^{k+1} is a proper interval graph.

Corollary 4. Powers of proper interval graphs are proper interval graphs.

A comparability graph is the underlying graph of an acyclic transitive digraph, which can be viewed as a poset. In other words, a graph G is comparability if it has a transitive ordering that is an ordering of V(G) into $[v_1, v_2, ..., v_n]$ such that

$$i < \ell < j$$
 and $v_i v_\ell, v_\ell v_j \in E(G)$ imply $v_i v_j \in E(G)$.

A cocomparability graph is the complement of a comparability graph, i.e., it has a cocomparability ordering that is an ordering of its vertex set into $[v_1, v_2, ..., v_n]$ such that

$$i < \ell < j$$
 and $v_i v_j \in E(G)$ imply $v_i v_\ell \in E(G)$ or $v_\ell v_j \in E(G)$.

Cocomparability graphs include interval graphs and *m*-trapezoid graphs defined below. Flotow [11] proved the following result for cocomparability graphs by means of *m*-trapezoid graphs. We now give a simple and direct proof.

Theorem 5. Suppose G is a graph and k a positive integer. If G^k is a cocomparability graph, then so is G^{k+1} .

Proof. Let $[v_1, v_2, \ldots, v_n]$ be a cocomparability ordering of G^k . Consider G^{k+1} and the ordering $[v_1, v_2, \ldots, v_n]$. Suppose $i < \ell < j$ and $v_i v_j \in E(G^{k+1})$, i.e., $d_G(v_i, v_j) \le k + 1$. If $d_G(v_i, v_j) \le k$, then $v_i v_j \in E(G^k)$, which implies that either $v_i v_\ell \in E(G^k) \subseteq E(G^{k+1})$ or $v_\ell v_j \in E(G^k) \subseteq E(G^{k+1})$. Now, suppose $d_G(v_i, v_j) = k + 1$. Choose a vertex v_a such that $d_G(v_i, v_a) = k$ and $d_G(v_a, v_j) = 1$. Then, $v_i v_a \in E(G^k)$ and $v_a v_j \in E(G^k)$. If $i < \ell < a$, then either $d_G(v_i, v_\ell) \le k$ or $d_G(v_\ell, v_a) \le k$. For the former case, $v_i v_\ell \in E(G^k) \subseteq E(G^{k+1})$; for the latter case, $d_G(v_\ell, v_j) \le d_G(v_\ell, v_a) + d_G(v_a, v_j) \le k + 1$ and so $v_\ell v_j \in E(G^{k+1})$. If $a < \ell < j$, then

either $d_G(v_a,v_\ell) \leq k$ or $d_G(v_\ell,v_j) \leq k$. For the former case, $d_G(v_\ell,v_j) \leq d_G(v_a,v_\ell) + d_G(v_a,v_j) \leq k+1$ and so $v_\ell v_j \in E(G^{k+1})$; for the latter case, $v_\ell v_j \in E(G^k) \subseteq E(G^{k+1})$. Hence, in any case, $[v_1,v_2,\ldots,v_n]$ is a cocomparability ordering of G^{k+1} and G^{k+1} is a cocomparability graph. \square

Corollary 6. Powers of cocomparability graphs are cocomparability.

Although, the result for cocomparability graphs can be proved without using m-trapezoid graphs, the result for m-trapezoid graphs has its own interest. As the final part of this paper, we also give a new proof for the result on m-trapezoid graphs.

Suppose $m \ge 0$ and L_0, L_1, \ldots, L_m are m+1 parallel lines, indexed to their ordering, in the plane. Suppose $[a_i, b_i]$ is an interval in L_i for $0 \le i \le m$. These intervals define an m-trapezoid that is the region bounded by the polygon $a_0, a_1, \ldots, a_m, b_m, b_{m-1}, \ldots, b_0, a_0$. An m-trapezoid graph is the intersection graph of m-trapezoids over m+1 parallel lines in the plane. Without loss of generality, we may assume that all right endpoints b_i 's for different m-trapezoids are distinct. Note that 0-trapezoid graphs are precisely interval graphs; 1-trapezoid graphs are the usual trapezoid graphs, which include permutation graphs; and m-trapezoid are precisely comparability graphs of posets with interval dimension at most m+1 (see [11, 25]).

Lemma 7. A graph G = (V, E) is an m-trapezoid graph if and only if it has a family of m-trapezoid orderings that is a set $\{<_0, <_1, \ldots, <_m\}$ of m+1 orderings of V such that the following two conditions hold for all vertices x and y.

- (T1(x, y, G)) If x and y disagree in two orderings $<_i$ and $<_j$ (i.e., $x <_i y$ but $y <_i x$ or $x <_i y$ but $y <_i x$), then $xy \in E$.
- (T2(x,y,G)) If x and y agree in all orderings (say, $x <_{\ell} y$ for all ℓ) and $xy \in E$, then there exists some i^* such that $x <_{i^*} z <_{i^*} y$ implies $zy \in E$.

Proof. (\Rightarrow) Suppose G is an m-trapezoid graph whose m-trapezoid representation is over the parallel lines L_0, L_1, \ldots, L_m . For each vertex $v \in V$, let $[a_i^v, b_i^v]$ be the interval for the m-trapezoid of v in L_i . Define an ordering $<_i$ of V by

$$(2.1) x <_i y \text{ if and only if } b_i^x < b_i^y.$$

It is straightford to check that the two conditions (T1) and (T2) hold.

 (\Leftarrow) Conversely, suppose G has a family of m-trapezoid orderings $\{<_0,<_1,\ldots,<_m\}$. Construct m+1 parallel lines L_0,L_1,\ldots,L_m . For any vertex $v\in V$ and any line L_i , choose b_i^v such that (2.1) holds. Define

$$a_i^v = \min(\{b_i^v\} \cup \{b_i^x : xv \in E, \ x <_i v, \ \text{and} \ zv \in E \ \text{whenever} \ x <_i z <_i v\}).$$

Then the |V| *m*-trapezoids defined by the intervals $[a_i^v, b_i^v]$ determine an *m*-trapezoid graph, which can be verified to be the graph G.

Theorem 8. Suppose G is a graph and k a positive integer. If G^k is an m-trapezoid graph, then so is G^{k+1} .

Proof. Let $\{<_0,<_1,\ldots,<_m\}$ be a family of m-trapezoid orderings of G^k . Consider G^{k+1} and the family $\{<_0,<_1,\ldots,<_m\}$. Since $(\mathrm{T1}(x,y,G^k))$ holds for all x and y and $E(G^k)\subseteq E(G^{k+1})$, $(\mathrm{T1}(x,y,G^{k+1}))$ holds for all x and y. For $(\mathrm{T2}(x,y,G^{k+1}))$, suppose $x<_\ell y$ for all ℓ and $xy\in E(G^{k+1})$. Choose a vertex w such that $d_G(x,w)\leq k$ and $d_G(w,y)=1$.

Note that either $w <_i x$ for some i or $x <_\ell w$ for all ℓ . For the former case, choose $i^* = i$. For the later case, $(T2(x, w, G^k))$ holds for some $<_{i_1^*}$ and we choose $i^* = i_1^*$. In either case, consider any z with $x <_{i^*} z <_{i^*} y$. If z and y disagree in two orderings, then $(T1(z, y, G^k))$ implies $zy \in E(G^k) \subseteq E(G^{k+1})$. So we may assume that z and y agree in all orderings. If z and w disagree in two orderings, then $(T1(z, w, G^k))$ implies $zw \in E(G^k)$ and so $zy \in E(G^{k+1})$. So we may assume that z and w agree in all orderings.

Case 1. $w <_i x$ for some i and $i^* = i$.

As $w <_i x <_i z <_i y$, we have $w <_\ell z <_\ell y$ for all ℓ . Since $wy \in E(G) \subseteq E(G^k)$, $(T2(w, y, G^k))$ holds for some i_2^* . In this case, $zy \in E(G^k) \subseteq E(G^{k+1})$.

Case 2. $x <_{\ell} w$ for all ℓ and $i^* = i_1^*$.

In this case, $x<_{i_1^*}z<_{i_1^*}$ w or z=w or $w<_{i_1^*}z<_{i_1^*}$ y. For the case of $x<_{i_1^*}z<_{i_1^*}$ w, $(T2(x,w,G^k))$ implies $zw\in E(G^k)$ and so $zy\in E(G^{k+1})$. For the case of z=w, $zy=wy\in E(G)\subseteq E(G^{k+1})$. For the case of $w<_{i_1^*}z<_{i_1^*}y$, we have $w<_{\ell}z<_{\ell}y$ for all ℓ and so $(T2(w,y,G^k))$ holds for some i_2^* , which implies $zy\in E(G^k)\subseteq E(G^{k+1})$.

In any case, $(T2(x, y, G^{k+1}))$ holds. Hence $\{<_0, <_1, \dots, <_m\}$ is a family of *m*-trapezoid orderings for G^{k+1} and G^{k+1} is an *m*-trapezoid graph.

Corollary 9. Powers of trapezoid graphs are trapezoid graphs.

In fact, Theorems 1 and 5 also follow from Theorem 8.

Acknowledgments. The authors thank the referees for many constructive suggestions.

References

- Balakrishnan, R., Paulraja, P.: Graphs whose squares are chordal. Indian J. Pure Appl. Math. 12, 193–194 (1981); with erratum same J. 12, 1062 (1981)
- Balakrishnan, R., Paulraja, P.: Powers of chordal graphs. J. Aust. Math. Soc. Ser. A 35, 211–217 (1983)
- 3. Chang, G.J., Nemhauser, G.L.: The *k*-domination and *k*-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods **5**, 332–345 (1984)
- Chang, G.J., Nemhauser, G.L.: Covering, packing and generalized perfection. SIAM J. Algebraic Discrete Methods 6, 109–132 (1985)
- 5. Chen, C.Y., Chang, C.C., Chang, G.J.: Proper interval graphs and the guard problem. Discrete Math. 170, 223–230 (1997)
- Dagan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring. Discrete Appl. Math. 21, 35–46 (1988)

- 7. Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Comb. 24B, 23–30 (1987)
- 8. Damaschke, P.: Distances in cocomparability graphs and their powers. Discrete Appl. Math. 35, 67–72 (1992)
- 9. Ding, G.: Covering the edges with consecutive sets. J. Graph Theory 15, 559–562 (1991)
- 10. Duchet, P.: Classical perfect graphs. Ann. Discrete Math. 21, 67-96 (1984)
- 11. Flotow, C.: On powers of m-trapezoid graphs. Discrete Appl. Math. 63, 187–192 (1995)
- 12. Flotow, C.: On powers of circular arc graphs and proper circular arc graphs. Discrete Appl. Math. **69**, 199–207 (1996)
- 13. Flotow, C.: Graphs whose powers are chordal and graphs whose powers are interval graphs. J. Graph Theory **24**, 323–330 (1997)
- 14. Hoffman, A.J., Kolen, A.W.J., Sakarovitch, M.: Totally-balanced and greedy matrices. SIAM J. Algebraic Discrete Methods 6, 721–730 (1985)
- 15. Laskar, R., Shier, D.: On chordal graphs. Congr. Numerantium 29, 579–588 (1980)
- Laskar, R., Shier, D.: On powers and centers of chordal graphs. Discrete Appl. Math. 6, 139–147 (1983)
- 17. Lin, Y., Skiena, S.: Algorithms for square roots of graphs. Manuscript
- 18. Lubiw, A.: Γ-Free Matrices. Master Thesis, Department of Combinatorics and Optimization, University of Waterloo 1982
- 19. Ramalingam, G., Pandu Rangan, C.: A uniform approach to domination problems on interval graphs. Inf. Process. Lett. 27, 271–274 (1988)
- 20. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Numerantium **59**, 235–242 (1987)
- 21. Raychaudhuri, A.: On powers of strongly chordal graphs and circular arc graphs. Ars Comb. **34**, 147–160 (1992)
- Raychaudhuri, A., Roberts, F.S.: Generalized competition graphs and their applications. In: P. Brucker and R. Pauly, Methods of Oper. Res., pp. 295–311. Anton Hain, Koningstein, West Germany 1985
- 23. Roberts, F.S.: On the compatibility between a graph and a simple order. J. Comb. Theory, Ser. B 11, 28–38 (1971)
- Roberts, F.S.: Graph Theory and Its Applications to Problems of Society. CBMS-NSF Reg. Conf. Ser. Appl. Math. SIAM, 1978
- 25. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Bartimore, MD: John Hopkins University Press 1991

Received: November 21, 1997

Final version received: October 5, 1998