Skip to main content
Log in

Exploring the posterior of a hierarchical IRT model for item effects

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

A one-way ANOVA structure is imposed on the item difficulty and the item discrimination parameter of a two-parameter hierarchical IRT model for item effects. Bayesian estimation of the model is illustrated for the Metropolis-Hastings within Gibbs and the data augmented Gibbs procedure. The posterior of the hierarchical IRT model is explored with respect to the location of parameters and the uncertainty of these parameter estimates. The posterior correlations among parameters are shown to be due to trade-off effects among parameters either on the same parameter scales or on different parameter scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251–269

    Article  Google Scholar 

  • Baker, F. B. (1998). An investigation of the item parameter recovery characteristics of a Gibbs sampling procedure. Applied Psychological Measurement, 22, 153–169.

    Article  Google Scholar 

  • Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49, 327–335.

    Google Scholar 

  • De Boeck, P., Daems, F., Meulders, M., & Rymenams, R. (1997). Ontwikkeling van een toets voor de eindtermen begrijpend lezen [Construction of a test for the educational targets of reading comprehension]. Leuven/Antwerp (Belgium): University of Leuven/University of Antwerp.

    Google Scholar 

  • Embretson, S. E. (1998). A cognitive design system approach to generation valid tests: Application to abstract reasoning. Psychological Methods, 3, 380–396.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian Data Analysis. London: Chapman & Hall.

    Book  Google Scholar 

  • Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient Metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting (pp. 599–608). New York: Oxford.

    Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Gilks, W., Richardson, S. & Spiegelhalter, D. (eds.) (1996). Markov Chain Monte Carlo in practice. New York: Chapman & Hall.

    MATH  Google Scholar 

  • Janssen, R., Tuerlinckx, F., Meulders, M. & De Boeck, P. (in press). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics.

  • Kass, R. E., Carlin, B. P., Gelman, A., & Neal, R. N. (1997). Markov chain Monte Carlo in practice: a roundtable discussion. The American Statistician, 52, 93–100.

    MathSciNet  Google Scholar 

  • Lord, F. M. (1975). The’ ability’ scale in item characteristic curve theory. Psychometrika, 40, 205–217.

    Article  Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Patz, R. J. & Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press.)

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Gilks, W. R., & Inskip, H. (1996). Hepatitis B: a case study in MCMC methods. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.). Markov chain Monte Carlo in practice (pp. 21–43). New York: Chapman & Hall.

    MATH  Google Scholar 

  • Stocking, M. L. (1989). Empirical estimation errors in item response theory as a function of test properties (Research Report 89-5). Educational Testing Service, Princeton, NJ.

    Google Scholar 

  • Tanner, M. A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions(3rd ed.). New York: Springer.

    Book  Google Scholar 

  • van der Linden, W. J., & Hambleton, R. K. (Eds.) (1997). Handbook of modern item response theory. New York: Springer.

    MATH  Google Scholar 

  • Wingersky, M. S. & Lord, F. M. (1984). An investigation of methods for reducing sampling error in certain IRT procedures. Applied Psychological Methods, 8, 347–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank the editor and two referees for helpful comments. The first author is a Postdoctoral Fellow of the Fund for Scientific Research — Flanders (Belgium). The construction of the test used in the example was funded by the OBPWO grant 93.05 of the Ministry of the Flemish Community, Department of Education, awarded to Paul De Boeck and Frans Daems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, R., De Boeck, P. Exploring the posterior of a hierarchical IRT model for item effects. Computational Statistics 15, 421–442 (2000). https://doi.org/10.1007/PL00022714

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00022714

Keywords