Skip to main content

Advertisement

Log in

On the Realization of Simulated Inductors with Reduced Parasitic Impedance Effects

  • Published:
Circuits, Systems & Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a method for reducing the parasitic impedance effects of the current feedback operational amplifiers (CFOAs) in an inductor simulator at low frequencies is proposed. Also, two novel grounded inductors employing a current follower (CF) and a second generation current conveyor (CCII) are given to illustrate the parasitic reduction technique clearly. The low frequency restrictions of the proposed inductors due to terminal parasitic resistances can be improved by using the presented parasitic impedance reduction technique. SPICE simulations show that the presented inductor employing CFOAs in a voltage-mode (VM) band-pass and high-pass filter application has lower parasitic effects at low frequencies. In addition to simulation results, experimental test results are given to verify the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Al-Walaie, M.A. Alturaigi, Current mode simulation of lossless floating inductance. Int. J. Electron. 83(6), 825–829 (1997)

    Article  Google Scholar 

  2. O. Cicekoglu, New current conveyor based active-gyrator implementation. Microelectron. J. 29(8), 525–528 (1998)

    Article  Google Scholar 

  3. O. Cicekoglu, A. Toker, H. Kuntman, Universal immittance function simulators using current conveyors. Comput. Electr. Eng. 27, 227–238 (2001)

    Article  MATH  Google Scholar 

  4. A. Fabre, Gyrator implementation from commercially available transimpedance operational amplifiers. Electron. Lett. 28(3), 263–264 (1992)

    Article  Google Scholar 

  5. A. Fabre, H. Barthelemy, Composite second-generation current conveyor with reduced parasitic resistance. Electron. Lett. 30(5), 377–378 (1994)

    Article  Google Scholar 

  6. A. Fabre, O. Saaid, F. Wiest, C. Boucheron, High frequency applications based on a new current controlled conveyor. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43, 82–91 (1996)

    Article  Google Scholar 

  7. G. Ferri, N. Guerrini, High-valued passive element simulation using low-voltage low-power current conveyors for fully integrated applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(4), 405–409 (2001)

    Article  Google Scholar 

  8. G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors (Kluwer Academic, Dordrecht, 2003)

    Google Scholar 

  9. G. Ferri, N.C. Guerrini, M. Diqual, CCII-based floating inductance simulator with compensated series resistance. Electron. Lett. 39, 1560–1562 (2003)

    Article  Google Scholar 

  10. C. Giannì, S. Pennisi, G. Scotti, A. Trifiletti, The universal circuit simulator: a mixed signal approach to n-port network and impedance synthesis. IEEE Trans. Circuits Syst. I 54(10), 2178–2183 (2007)

    Article  MathSciNet  Google Scholar 

  11. M. Gulsoy, O. Cicekoglu, Lossless and lossy synthetic inductors employing single current differencing buffered amplifier. IEICE Trans. Commun. E88B(5), 2152–2155 (2005)

    Article  Google Scholar 

  12. M. Higashimura, Y. Fukui, Novel method for realizing lossless floating admittance using current conveyors. Electron. Lett. 23(10), 498–499 (1987)

    Article  Google Scholar 

  13. W. Kiranon, P. Pawarangkoon, Floating inductance simulation based on current conveyors. Electron. Lett. 33, 1748–1749 (1997)

    Article  Google Scholar 

  14. M.C. Layos, I. Haritantis, On the derivation of current-mode floating inductors. Int. J. Circuit Theory Appl. 25(1), 29–36 (1997)

    Article  Google Scholar 

  15. S. Minaei, E. Yuce, O. Cicekoglu, A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integr. Circuits Signal Process. 47(2), 199–202 (2006)

    Article  Google Scholar 

  16. G. Palumbo, S. Pennisi, A technique for the reduction of the input resistance of current-mode circuits electronics, in IEEE International Conference, ICECS, vol. 2 (1998), pp. 279–282

  17. O. Saaid, A. Fabre, Class AB current controlled resistance for high performance current mode applications. Electron. Lett. 32, 4–5 (1996)

    Article  Google Scholar 

  18. A.S. Sedra, K.C. Smith, A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory 17(1), 132–134 (1970)

    Article  Google Scholar 

  19. A.S. Sedra, K.C. Smith, Microelectronic Circuits, 4th edn. (Oxford University Press, London, 1998), p. 4

    Google Scholar 

  20. F. Seguin, A. Fabre, New second generation current conveyor with reduced parasitic resistance and bandpass filter application. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 781–785 (2001)

    Article  Google Scholar 

  21. R. Senani, On the realization of floating active elements. IEEE Trans. Circuits Syst. CAS-33(3), 323–324 (1986)

    Article  Google Scholar 

  22. L. Serrano, A. Carlosena, GB-R impedances: new approach to impedance simulation. Electron. Lett. 31(9), 689–690 (1995)

    Article  Google Scholar 

  23. V. Singh, On floating impedance simulation. IEEE Trans. Circuits Syst. 36(1), 161–162 (1989)

    Article  Google Scholar 

  24. A.M. Soliman, New active-gyrator circuit using a single current conveyor. Proc. IEEE 66, 1580–1581 (1978)

    Article  Google Scholar 

  25. W. Surakampontorn, Accurate CMOS-based current conveyors. IEEE Trans. Instrum. Meas. 40, 699–702 (1991)

    Article  Google Scholar 

  26. A. Toker, O. Cicekoglu, H. Kuntman, New active gyrator circuit suitable for frequency-dependent negative resistor implementation. Microelectron. J. 30, 59–62 (1999)

    Article  Google Scholar 

  27. P.M. Trabulo, D.A. Duraes, P.M. Mendes, P.J. Garrido, J.H. Correia, Spiral inductors on silicon for wireless communications. Mat. Sci. Forum 455–456, 116–119 (2004)

    Article  Google Scholar 

  28. Z. Wang, Novel voltage-controlled grounded resistor. Electron. Lett. 26, 1711–1712 (1990)

    Article  Google Scholar 

  29. E. Yuce, Inductor implementation using a canonical number of active and passive elements. Int. J. Electron. 94(4), 317–326 (2007)

    Article  Google Scholar 

  30. E. Yuce, Negative impedance converter with reduced non-ideal gain and parasitic impedance effects. IEEE Trans. Circuits Syst. I Regul. Pap. 55(1), 264–271 (2008)

    MathSciNet  Google Scholar 

  31. E. Yuce, Grounded inductor simulators with improved low frequency performances. IEEE Trans. Instrum. Meas. 57(5), 1079–1084 (2008)

    Article  Google Scholar 

  32. E. Yuce, O. Cicekoglu, The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr. Circuits Signal Process. 46(2), 103–110 (2006)

    Article  Google Scholar 

  33. E. Yuce, S. Minaei, A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Trans. Circuits Syst. I Regul. Pap. 55(1), 254–263 (2008)

    MathSciNet  Google Scholar 

  34. E. Yuce, S. Minaei, Universal current-mode filters and parasitic impedance effects on the filter performances. Int. J. Circuit Theory Appl. 36, 161–171 (2008)

    Article  Google Scholar 

  35. E. Yuce, S. Minaei, O. Cicekoglu, A novel grounded inductor realization using a minimum number of active and passive components. ETRI J. 27(4), 427–432 (2005)

    Google Scholar 

  36. E. Yuce, S. Minaei, O. Cicekoglu, Limitations of the simulated inductors based on a single current conveyor. IEEE Trans. Circuits Syst. I Regul. Pap. 53(12), 2860–2867 (2006)

    Article  Google Scholar 

  37. E. Yuce, S. Minaei, O. Cicekoglu, Full-wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

About this article

Cite this article

Yuce, E., Minaei, S. On the Realization of Simulated Inductors with Reduced Parasitic Impedance Effects. Circuits Syst Signal Process 28, 451–465 (2009). https://doi.org/10.1007/s00034-008-9093-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-008-9093-0

Keywords

Navigation