Skip to main content
Log in

Fourth-Order Complex-Lag PWVD for Multicomponent Signals with Application in ISAR Imaging of Maneuvering Targets

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The fourth-order complex-lag polynomial Wigner–Ville distribution (PWVD) is extended to generate a high resolution time–frequency distribution for multicomponent signals in this paper. For signals with polynomial phase up to order four, the interferences between different components are reduced by the convolution in the frequency domain of the complex-lag PWVD. The complex-lag PWVD can achieve optimal energy concentration, and it is used in the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, where high quality instantaneous ISAR images are obtained. Simulated results demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bao, C.Y. Sun, M.D. Xing, Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations. IEEE Trans. Aerosp. Electron. Syst. 37(3), 1091–1099 (2001)

    Article  Google Scholar 

  2. B. Barkat, B. Boashash, Design of higher-order polynomial Wigner–Ville distributions. IEEE Trans. Signal Process. 47(9), 2608–2611 (1999)

    Article  MATH  Google Scholar 

  3. G.A. Bi, Y.M. Wei, Split-radix algorithms for arbitrary order of polynomial time frequency transform. IEEE Trans. Signal Process. 55(1), 134–141 (2007)

    Article  MathSciNet  Google Scholar 

  4. B. Boashash, P. O’shea, Polynomial Wigner–Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans. Signal Process. 42(1), 216–220 (1994)

    Article  Google Scholar 

  5. V.C. Chen, H. Ling, Time–Frequency Transform for Radar Imaging and Signal Analysis (Artech House, Boston, 2002)

    Google Scholar 

  6. H. Choi, W.J. Williams, Improved time–frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Signal Process. 37(6), 862–871 (1989)

    Article  Google Scholar 

  7. I.S. Choi, B.L. Cho, H.T. Kim, ISAR motion compensation using evolutionary adaptive wavelet transform. IEE Proc. Radar Sonar Navig. 150(4), 229–233 (2003)

    Article  MathSciNet  Google Scholar 

  8. L. Cohen, Time–frequency distributions—A review. Proc. IEEE 77(7), 941–981 (1989)

    Article  Google Scholar 

  9. J. Cui, W. Wong, S. Mann, Time–frequency analysis of visual evoked potentials using chirplet transform. Electron. Lett. 41(4), 217–218 (2005)

    Article  Google Scholar 

  10. I. Djurovic, T. Thayaparan, L.J. Stankovic, Adaptive local polynomial Fourier transform in ISAR. EURASIP J. Appl. Signal Process., Article ID 36093, 15 pages (2006)

    Google Scholar 

  11. J. Jeong, W.J. Williams, Kernel design for reduced interference distributions. IEEE Trans. Signal Process. 40(2), 402–419 (1992)

    Article  Google Scholar 

  12. K.T. Kim, I.S. Choi, H.T. Kim, Efficient radar target classification using adaptive joint time-frequency processing. IEEE Trans. Antennas Propag. 48(12), 1789–1801 (2000)

    Article  Google Scholar 

  13. A. Monti, C. Medigue, L. Mangin, Instantaneous parameter estimation in cardiovascular time series by harmonic and time–frequency analysis. IEEE Trans. Biomed. Eng. 49(12), 1547–1556 (2002)

    Article  Google Scholar 

  14. M. Morelande, B. Senadji, B. Boashash, Complex-lag polynomial Wigner–Ville distribution, in Proc. IEEE TENCON (1997), pp. 43–46

  15. L.J. Stankovic, A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution. IEEE Trans. Signal Process. 43(5), 1262–1268 (1995)

    Article  Google Scholar 

  16. L.J. Stankovic, Time-frequency distributions with complex argument. IEEE Trans. Signal Process. 50(3), 475–486 (2002)

    Article  Google Scholar 

  17. L.J. Stankovic, T. Thayaparan, M. Dakovic, Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter. IEEE Trans. Signal Process. 54(11), 4332–4342 (2006)

    Article  Google Scholar 

  18. T. Thayaparan, S. Kennedy, Detection of a maneuvering air target in sea-clutter using joint time–frequency analysis. IEE Proc. Radar Sonar Navig. 151(1), 19–30 (2004)

    Article  Google Scholar 

  19. T. Thayaparan, G. Lampropoulos, S.K. Wong, E. Riseborough, Application of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data. IEE Proc. Radar Sonar Navig. 150(4), 213–220 (2003)

    Article  Google Scholar 

  20. X.B. Wang, X.Y. Zhou, T.J. Cui, High-resolution inverse synthetic aperture radar imaging based on the shooting and bouncing ray method, in IEEE Proceedings of GSMM 2008 (2006), pp. 432–435

  21. Y.X. Zhao, L.E. Atlas, R.J. Marks, The use of cone-shaped kernels for generalized time–frequency representations of nonstationary signals. IEEE Trans. Acoust. Speech Signal Process. 38(7), 1084–1091 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Jiang, Y. Fourth-Order Complex-Lag PWVD for Multicomponent Signals with Application in ISAR Imaging of Maneuvering Targets. Circuits Syst Signal Process 29, 449–457 (2010). https://doi.org/10.1007/s00034-010-9154-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9154-z

Keywords

Navigation