Skip to main content
Log in

An Active Analog Filter Architecture Ensuring Unity-Gain and Low Sensitivity

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The proposed architecture features an independent setting of filter poles, while ensuring a constant unity gain. The unity gain simplifies the cascaded connection of filter blocks and avoids the increase of voltage swing for subsequent cascaded blocks observed with other filter architectures. Only the input Operational Amplifier must meet more demanding requirements (in terms of bandwidth and open-loop gain), while the other units are voltage follower units with the possibility of using a video buffer to cope with a demanding load capability. Performances are much better than or comparable to other known filter architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Analog Devices, AD 810 datasheet, rev. A (2003) (available online www.analog.com)

  2. Analog Devices, ADA 4841-1/-2 datasheet, rev. C (2006) (available online www.analog.com)

  3. A. Budak, D.M. Petrela, Frequency limitations of active filters using operational amplifiers. IEEE Trans. Circuit Theory 19(4), 322–328 (1972)

    Article  Google Scholar 

  4. R.L. Geiger, A. Budak, Active filters with zero amplifier sensitivity. IEEE Trans. Circuits Syst. 26(4), 277–288 (1979)

    Article  MATH  Google Scholar 

  5. M.S. Ghausi, Analog active filters. IEEE Trans. Circuits Syst. 31(1), 13–31 (1984)

    Article  MATH  Google Scholar 

  6. J.G. Graeme, G.E. Tobey, L.P. Huelsman, Operational Amplifiers—Design and Applications (McGraw Hill, New York, 1971)

    Google Scholar 

  7. L.P. Huelsman, Handbook of Operational Amplifiers RC Active Networks (Burr-Brown Research Corp., Tucson, 1966)

    Google Scholar 

  8. W. Jung (ed.), Op Amp Applications Handbook (Neunes, Burlington, 2005)

    Google Scholar 

  9. K.R. Laker, R. Schaumann, M.S. Ghausi, Multiple-loop feedback topologies for the design of low-sensitivity active filters. IEEE Trans. Circuits Syst. 26(1), 1–21 (1979)

    Article  Google Scholar 

  10. A. Mariscotti, A large bandwidth and dynamic range magnetic field probe, in Proceedings of the IEEE International Measurement Technical Conference IMTC 2007, Warsaw, Poland, 2–4 May 2007, pp. 1–5

  11. S. Natarajan, B.B. Bhattaccharyya, Optimization of RC active filters for extended bandwidth operations. Proc. IEEE 66(2), 260–261 (1978)

    Article  Google Scholar 

  12. National Semiconductors, LMP7717 datasheet, Nov. 2007 (available online www.natsemi.com)

  13. National Semiconductors, LM 6152/4 datasheet, Feb. 2006 (available online www.natsemi.com)

  14. National Semiconductors, LMH6642 datasheet, Oct. 2006 (available online www.natsemi.com)

  15. M.A. Soderstrand, S.K. Mitra, Design of active filters with zero passive Q-sensitivity. IEEE Trans. Circuit Theory 20(3), 289–293 (1973)

    Google Scholar 

  16. Texas Instrument, THS4281 datasheet, Apr. 2004 (available online www.ti.com)

  17. Texas Instrument, TL081/2/4 datasheet, Sep. 2004 (available online www.ti.com)

  18. L. Weyten, Passive element sensitivity of second-order RC active filter sections. IEEE Trans. Circuits Syst. 27(10), 855–862 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mariscotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariscotti, A. An Active Analog Filter Architecture Ensuring Unity-Gain and Low Sensitivity. Circuits Syst Signal Process 29, 745–756 (2010). https://doi.org/10.1007/s00034-010-9168-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-010-9168-6

Keywords

Navigation