Skip to main content

4-Bit Parallel-Input Exponential Digital-to-Analog Converter in CMOS 0.18 μm Technology

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new digitally controlled linear-in-dB CMOS variable gain amplifier is proposed. The circuit employs the proposed novel approach in achieving a wide-range true-exponential transfer function e 2X using a traditional pseudo-exponential amplifier followed by a variable gain stage, to expand the output dynamic range. A single digitally controlled variable resistor is used to tune the circuit accordingly by controlling X with a digital word. The result is a digitally controlled data conversion that yields a new type of non-linear digital-to-analog converter. Finally, a 4-bit converter is implemented in a TSMC 0.18 μm CMOS technology and displays a gain from about −21 dB to 36 dB in steps of 3.89 dB with an output linear error in [−0.66,0.45] dB and a static power consumption of 2.34 mW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Abdelfattah, A.M. Soliman, Variable gain amplifiers based on a new approximation method to realize the exponential function. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(9), 1348–1354 (2002)

    Article  Google Scholar 

  2. R.J. Baker, CMOS Circuit Design, Layout, and Simulation, revised 2nd ed. (Wiley–IEEE Press, New York, 2007)

    Book  Google Scholar 

  3. C.-C. Chang, S.-I. Liu, Pseudo-exponential function for MOSFETs in saturation. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 47(11), 1318–1321 (2000)

    Article  MathSciNet  Google Scholar 

  4. H. Elwan, A. El Adawi, M. Ismail, H.K. Olsson, A. Soliman, Digitally controlled dB-linear CMOS variable gain amplifier. Electron. Lett. 35(20), 1725–1727 (1999)

    Article  Google Scholar 

  5. M.M. Green, S. Joshi, A 1.5 V CMOS VGA based on pseudo-differential structures, in Proceedings of the 2000 IEEE International Symposium on Circuits and Systems, vol. 4 (2000), pp. 461–464

    Google Scholar 

  6. R. Harjani, A low-power CMOS VGA for 50 Mb/s disk drive read channels. IEEE Trans. Circuits Syst., II Analog Digit. Signal Process. 42(6), 370–376 (1995)

    Article  Google Scholar 

  7. P.-C. Huang, L.-Y. Chiou, C.-K. Wang, A 3.3-V CMOS wideband exponential control variable-gain-amplifier, in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 1 (1998), pp. 285–288

    Google Scholar 

  8. D. Johns, K.W. Martin, Analog Integrated Circuit Design (Wiley, New York, 1997)

    MATH  Google Scholar 

  9. C.-H. Lin, T.C. Pimenta, M. Ismail, A low-voltage CMOS exponential function circuit for AGC applications, in Proc. XI Brazilian Symp. Integrated Circuit Design (1998), pp. 195–198

    Google Scholar 

  10. W. Liu, S.-I. Liu, CMOS exponential function generator. Electron. Lett. 39(1), 1–2 (2003)

    Article  Google Scholar 

  11. B. Maundy, S. Gift, Novel pseudo-exponential circuits. IEEE Trans. Circuits Syst., II Express Briefs 52(10), 675–679 (2005)

    Article  Google Scholar 

  12. B. Maundy, D. Westwick, S. Gift, An improved pseudo-exponential, pseudo-logarithmic circuit. Can. J. Electr. Comput. Eng. 32(3), 145–150 (2007)

    Article  Google Scholar 

  13. A. Nosratinia, M. Ahmadi, G.A. Jullien, M. Shridhar, High-drive CMOS buffer for large capacitive loads. Electron. Lett. 27(12), 1044–1046 (1991)

    Article  Google Scholar 

  14. S. Purighalla, B. Maundy, Improved dynamic range, digitally-controlled linear-in-dB CMOS variable gain amplifier, in Proceedings of the 2011 IEEE International Symposium on Circuits and Systems, May 15 2011–May 18 2011 (2011), pp. 2517–2520

    Google Scholar 

  15. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York, 2001)

    Google Scholar 

  16. G.S. Sahota, C.J. Persico, High dynamic range variable-gain amplifier for CDMA wireless applications, in Proc. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers. 43rd ISSCC (1997), pp. 374–375

    Chapter  Google Scholar 

  17. W.A. Serdijn, A.H.M. van Roermund, A low-voltage low-power fully integratable automatic gain control for hearing instruments, in Nineteenth European Solid-State Circuits Conference, ESSCIRC ’93, vol. 1 (1993), pp. 258–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Maundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purighalla, S., Maundy, B. 4-Bit Parallel-Input Exponential Digital-to-Analog Converter in CMOS 0.18 μm Technology. Circuits Syst Signal Process 31, 413–433 (2012). https://doi.org/10.1007/s00034-011-9314-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9314-9

Keywords