Skip to main content
Log in

Realization of New Mutually Coupled Circuit Using CC-CBTAs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel circuit for the realization of the mutually coupled circuit using three current-controlled current backward transconductance amplifiers (CC-CBTAs) as active components is proposed. The active mutually coupled circuit structures are also called the synthetic transformers. The circuit is derived by using three floating simulated inductors that are connected as the T-type transformer model. The circuit has the following attractive advantages: (i) The values of a primary self-inductance, a secondary self-inductance and a mutual inductance can be independently tuned by the transconductance gain of the CC-CBTAs; (ii) The circuit uses three grounded capacitors that are suitable from the point of integrated circuit implementation; (iii) It uses only three active components; (iv) It has a good sensitivity performance with respect to the tracking errors; (v) Both positive and negative couplings are achieved and the coupling coefficient is not limited by 1 in magnitude; (vi) Symmetrical coupling is achieved without necessitating any matching condition; (vii) The proposed circuit has a floating structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Abulma’atti, S.M. Al-Shahrani, M.K. Al-Absi, Simulation of a mutually coupled circuit using plus-type CCIIs. Int. J. Electron. 92(1), 49–54 (2005)

    Article  Google Scholar 

  2. F.S. Atiya, The composite active filter: A combined wave-active and gyrator-C filter. IEEE Trans. Circuits Syst. 25, 573–579 (1978)

    Article  Google Scholar 

  3. U.E. Ayten, M. Sagbas, H. Sedef, Current mode Leapfrog ladder filters using a new active block. AEÜ, Int. J. Electron. Commun. 64, 503–511 (2010)

    Article  Google Scholar 

  4. U. Cam, O. Cicekoglu, H. Kuntman, Novel lossless floating immittance simulator employing only two FTFNs. Analog Integr. Circuits Signal Process. 29, 233–235 (2001)

    Article  Google Scholar 

  5. A. De Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, The VCG-CCII: A novel building block and its application to capacitance multiplication. Analog Integr. Circuits Signal Process. 58, 55–59 (2009)

    Article  Google Scholar 

  6. A. Fabre, O. Saaid, F. Wiest, C. Boucheron, High frequency applications based on a new current controlled conveyor. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 43, 82–91 (1996)

    Article  Google Scholar 

  7. M. Higashimura, Y. Fukui, Realization of new mutually coupled circuits using mutators. Int. J. Electron. 58, 477–485 (1985)

    Article  Google Scholar 

  8. M. Higashimura, Y. Fukui, RC active realization of mutually coupled circuit, in Proceedings of the IEEE International Symposium on Circuits and Systems (1991), pp. 1343–1346

    Google Scholar 

  9. M. Higashimura, A realization of mutually coupled circuit using CCIIs. IEICE Trans. E74(12), 3924–3926 (1991)

    Google Scholar 

  10. M. Higashimura, Y. Fukui, Electronically tunable OTA-C mutually coupled circuit. Electron. Lett. 27, 1251–1252 (1991)

    Article  Google Scholar 

  11. K. Kaewdang, W. Surakampontorn, On the realization of electronically current-tunable CMOS OTA. AEÜ, Int. J. Electron. Commun. 61, 300–306 (2007)

    Article  Google Scholar 

  12. U. Kumar, S.K. Shukla, Recent developments in current conveyors and their applications. IEE Proc. Part G 16, 47–52 (1985)

    MathSciNet  MATH  Google Scholar 

  13. A. Marcellis, G. Ferri, N.C. Guerrini, G. Scotti, V. Stornelli, A. Trifiletti, A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectron. J. 40, 20–25 (2009)

    Article  Google Scholar 

  14. S. Minaei, O. Cicekoglu, H. Kuntman, S. Turkoz, Electronically tunable, active floating inductance simulation. Int. J. Electron. 89(12), 905–912 (2002)

    Article  Google Scholar 

  15. S. Minaei, E. Yuce, O. Cicekoglu, A versatile active circuit for realizing floating inductance, capacitance, FDNR and admittance converter. Analog Integr. Circuits Signal Process. 47, 199–202 (2006)

    Article  Google Scholar 

  16. P.V.A. Mohan, Grounded capacitor based grounded and floating inductance simulation using current conveyors. Electron. Lett. 34(11), 1037–1038 (1998)

    Article  Google Scholar 

  17. M. Sagbas, U.E. Ayten, H. Sedef, M. Koksal, Electronically tunable floating inductance simulator. AEÜ, Int. J. Electron. Commun. 63(5), 423–427 (2009)

    Article  Google Scholar 

  18. M. Sagbas, U.E. Ayten, H. Sedef, M. Koksal, Floating immittance function simulator and its applications. Circuits Syst. Signal Process. 28, 55–63 (2009)

    Article  MATH  Google Scholar 

  19. H. Sedef, C. Acar, A new floating inductor circuit using differential voltage current conveyors. Frequenz 54(5–6), 123–125 (2000)

    Article  Google Scholar 

  20. H. Sedef, M. Sagbas, C. Acar, Current-controllable fully-integrated inductor simulator using CCCIIs. Int. J. Electron. 95(5), 425–429 (2008)

    Article  Google Scholar 

  21. T. Shigehuo, M. Nakanura, S. Yoneda, A simulation of high-frequency mutually coupled circuit using bipolar transistors. IEICE Trans. J74-C-11, 53–60 (1991)

    Google Scholar 

  22. M. Siripruchyanuna, W. Jaikla, CMOScurrent-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ, Int. J. Electron. Commun. 62, 277–287 (2008)

    Article  Google Scholar 

  23. M.A. Soderstrand, Active R ladders: High-frequency high-order low-sensitivity active-R filters without external capacitors. IEEE Trans. Circuits Syst. 25, 1032–1038 (1978)

    Article  Google Scholar 

  24. C. Toumazou, F.J. Lidgey, D.G. Haigh, The Current Mode Approach and Analog IC Design (Peter Pergrinus, London, 1990)

    Google Scholar 

  25. B. Wilson, Recent developments in current mode circuits. Proc. IEE Proc. Part G 137, 63–67 (1990)

    Google Scholar 

  26. E. Yuce, O. Cicekoglu, S. Minaei, CCII-based grounded to floating immittance converter and a floating inductance simulator. Analog Integr. Circuits Signal Process. 46, 287–291 (2006)

    Article  Google Scholar 

  27. E. Yuce, On the implementation of the floating simulators employing a single active device. AEÜ, Int. J. Electron. Commun. 61, 453–458 (2007)

    Article  Google Scholar 

  28. E. Yuce, S. Minaei, A new active network suitable for realizing ladder filters and transformer simulator. J. Circuits Syst. Comput. 16(1), 29–41 (2007)

    Article  Google Scholar 

  29. E. Yuce, S. Minaei, Electronically tunable simulated transformer and its application to Stagger-tuned filter. IEEE Trans. Instrum. Meas. 57(9), 2083–2088 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sagbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koksal, M., Ayten, U.E. & Sagbas, M. Realization of New Mutually Coupled Circuit Using CC-CBTAs. Circuits Syst Signal Process 31, 435–446 (2012). https://doi.org/10.1007/s00034-011-9322-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9322-9

Keywords

Navigation