Skip to main content
Log in

High-Performance Mixed-Mode Universal Min-Max Circuits for Nanotechnology

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a low-power, high-speed and high-resolution voltage-mode Min-Max circuit, as well as a new efficient universal structure for determining the minimum and maximum values of the input digital signals, is proposed for nanotechnology. In addition, the proposed designs provide rail-to-rail input and output signals which enhance the performance and the robustness of the circuits. The advantage of the proposed Min-Max circuit is that it is extendable for any arbitrary n-digit and radix-r input numbers. Comprehensive simulation results at CMOS and CNFET technologies demonstrate the low-power and high-performance operation as well as insusceptibility to PVT variations of the proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abdelhalim, L. MacEachern, S. Mahmoud, A nanowatt successive approximation ADC with offset correction for implantable sensor applications, in Proc. IEEE International Symposium on Circuits and Systems, May 27–30 (2007), pp. 2351–2354

    Chapter  Google Scholar 

  2. A.K. Abu El-Seoud, M. El-Banna, M.A. Hakim, On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)

    Article  Google Scholar 

  3. V. Adler, E.G. Friedman, Delay and power expressions for a CMOS inverter driving a resistive-capacitive load. Analog Integr. Circuits Signal Process. 14(1–2), 29–39 (1997)

    Article  Google Scholar 

  4. A. Agnes, E. Bonizzoni, P. Malcovati, F. Maloberti, A 9.4-ENOB 1V 3.8uW 100kS/s SAR ADC with time-domain comparator, in Proc International Solid-State Circuits Conference, Feb. 3–7 (2008), pp. 246–610

    Google Scholar 

  5. J.S. Ajit, Y.-B. Kim, M. Choi, Performance assessment of analog circuits with carbon nanotube FET (CNFET), in Proc. 20th Great Lakes Symposium on VLSI, May 16–18 (2010), pp. 163–166

    Google Scholar 

  6. J.R. Angulo, J.E. Molinar-Solis, Sh. Gupta, R.G. Carvajal, A.J. López-Martín, A high-swing, high-speed CMOS WTA using differential flipped voltage followers. IEEE Trans. Circuits Syst. II 54(8), 668–672 (2007)

    Article  Google Scholar 

  7. A. Balijepalli, S. Sinha, Yu CaoCompact, Modeling of carbon nanotube transistor for early stage process-design exploration, in Proc. International Symposium on Low Power Electronics and Design, Aug. 27–29 (2007), pp. 2–7

    Google Scholar 

  8. R.G. Carvajal, J. Martinez-Heredia, J. Ramirez-Angulo, High-speed high-precision Min/Max circuits in CMOS technology. Electron. Lett. 36(8), 697–699 (2000)

    Article  Google Scholar 

  9. G. Cho, Y.-B. Kim, F. Lombardi, M. Choi, Performance evaluation of CNFET-based logic gates, in Proc. IEEE International Instrumentation and Measurement Technology Conference, May 5–7 (2009), pp. 909–912

    Google Scholar 

  10. A. Demosthenous, S. Smedley, J. Taylor, A CMOS analog winner-take-all network for large-scale applications. IEEE Trans. Circuits Syst. I 45(3), 300–304 (1998)

    Article  Google Scholar 

  11. J. Deng, Device modeling and circuit performance evaluation for nanoscale devices: silicon technology beyond 45 nm node and carbon nanotube field effect transistors. Doctoral dissertation, Stanford University, 2007

  12. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking. IEEE Trans. Electron Devices 54(12), 3195–3205 (2007)

    Article  Google Scholar 

  13. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region. IEEE Trans. Electron Devices 54(12), 3186–3194 (2007)

    Article  Google Scholar 

  14. R. Długosz, T. Talaśka, Low power current-mode binary-tree asynchronous Min/Max circuit. Microelectron. J. 41(1), 64–73 (2010)

    Article  Google Scholar 

  15. K. El Shabrawy, K. Maharatna, D. Bagnall, B.M. Al-Hashimi, Modeling SWCNT bandgap and effective mass variation using a Monte Carlo approach. IEEE Trans. Nanotechnol. 9(2), 184–193 (2010)

    Article  Google Scholar 

  16. C.J.B. Fayomi, G.W. Roberts, Design and characterization of low-voltage analog switch without the need for clock boosting, in Proc. the 47th International Midwest Symposium on Circuits and Systems, Jul. 25–28 (2004), pp. 315–318

    Google Scholar 

  17. R. Gregorian, Introduction to CMOS OP-AMPs and Comparators (Wiley, New York, 1999)

    Google Scholar 

  18. Z.S. Gunay, E. Sanchez-Sinencio, CMOS winner-take-all circuits: a detail comparison, in Proc. IEEE International Symposium on Circuits and Systems, Jun. 9–12 (1997), pp. 41–44

    Google Scholar 

  19. Y. He, E. Shnchez-Sinencio, Min-net winner-take-all CMOS implementation. Electron. Lett. 29(14), 1237–1239 (1993)

    Article  Google Scholar 

  20. S. Ju, Maximum/minimum value determination apparatus. United States Patent, 5894426, 1999

  21. S. Kazemi Nia, A. Khoei, Kh. Hadidi, High speed high precision voltage-mode MAX and MIN circuits. J. Circuits Syst. Comput. 16(2), 233–244 (2007)

    Article  Google Scholar 

  22. T.J. Kazmierski, D. Zhou, B.M. Al-Hashimi, HSPICE implementation of a numerically efficient model of CNT transistor, in Proc. Forum on Specification and Design Languages, Sept. 22–24 (2009), pp. 1–5

    Google Scholar 

  23. P. Keshavarzian, K. Navi, Universal ternary logic circuit design through carbon nanotube technology. Int. J. Nanotechnol. 6(10–11), 942–953 (2009)

    Article  Google Scholar 

  24. Y.-B. Kim, Y.-B. Kim, High speed and low power transceiver design with CNFET and CNT bundle interconnect, in Proc. IEEE International SOC Conference, Sep. (2010), pp. 152–157

    Google Scholar 

  25. Y.B. Kim, Y.-B. Kim, F. Lombardi, Novel design methodology to optimize the speed and power of the CNTFET circuits, in Proc. IEEE International Midwest Symposium on Circuits and Systems, Aug. 2–5 (2009), pp. 1130–1133

    Chapter  Google Scholar 

  26. J.-L. Lai, Z.-X. Guan, Y.-T. Chen, C.-F. Tai, R.-J. Chen, Implementation of fuzzy cellular neural network with image sensor in CMOS technology, in Proc. International Conference on Communications, Circuits and Systems, May 25–27 (2008), pp. 982–986

    Google Scholar 

  27. S. Lin, Y.-B. Kim, F. Lombardi, Y.J. Lee, A new SRAM cell design using CNTFETs, in Proc. IEEE International SoC Design Conference, Nov. 24–25 (2008), pp. 168–171

    Google Scholar 

  28. S. Lin, Y.-B. Kim, F. Lombardi, A novel CNFET based ternary logic gate design, in Proc. IEEE International Midwest Symposium on Circuits and Systems, Aug. 2–5 (2009), pp. 435–438

    Chapter  Google Scholar 

  29. B. Maundy, Min/Max circuit for analog convolutional decoders. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 48(8), 701–705 (2001)

    Article  Google Scholar 

  30. M.H. Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology. IET, Circuits Devices Syst. 5(4), 285–296 (2010)

    Article  Google Scholar 

  31. M.H. Moaiyeri, R. Faghih Mirzaee, K. Navi, T. Nikoubin, O. Kavehei, Novel direct designs for 3-input XOR function for low-power and high-speed applications. Int. J. Electron. 97(6), 647–662 (2010)

    Article  Google Scholar 

  32. M.H. Moaiyeri, R. Faghih Mirzaee, K. Navi, O. Hashemipour, Efficient CNTFET-based ternary full Adder cells for nanoelectronics. Nano-Micro Lett. 3(1), 43–50 (2011)

    Article  Google Scholar 

  33. K. Navi, M.H. Moaiyeri, R. Faghih Mirzaee, O. Hashemipour, B. Mazloom Nezhad, Two new low-power full adders based on majority-not gates. Microelectron. J. 40(1), 126–130 (2009)

    Article  Google Scholar 

  34. I.E. Opris, Rail-to-rail multiple-input Min/Max circuit. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(1), 137–140 (1998)

    Article  Google Scholar 

  35. Y. Ota, B.M. Wilamowski, CMOS implementation of a voltage-mode fuzzy Min-Max controller. J. Circuits Syst. Comput. 6(2), 171–184 (1996)

    Article  Google Scholar 

  36. P. Prommee, K. Angkeaw, M. Somdunyakanok, K. Dejhan, CMOS-based near zero-offset multiple inputs Max–Min circuits and its applications. Analog Integr. Circuits Signal Process. 61(1), 93–105 (2009)

    Article  Google Scholar 

  37. P. Prommee, K. Chattrakun, CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectron. J. 42(1), 52–62 (2011)

    Article  Google Scholar 

  38. J. Ramírez-Angulo, R. Gonzalez-Carvajal, G.O. Ducoudray, A.J. López-Martín, A. Torralba, New compact CMOS continuous-time low-voltage analog rank-order filter architecture. IEEE Trans. Circuits Syst. 51(5), 257–261 (2004)

    Article  Google Scholar 

  39. A. Raychowdhury, K. Roy, Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. 54(11), 2391–2401 (2007)

    Article  Google Scholar 

  40. A. Roychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4(2), 168–179 (2005)

    Article  Google Scholar 

  41. H. Shahidipour, A. Ahmadi, K. Maharatna, Effect of variability in SWCNT-based logic gates, in Proc. International Symposium on Integrated Circuits, Dec. 14–16 (2009), pp. 252–255

    Google Scholar 

  42. S. Siskos, S. Vlassis, I. Pitas, Analog implementation of fast Min/Max filtering. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(7), 913–918 (1998)

    Article  Google Scholar 

  43. M. Soleimani, A. Khoei, Kh. Hadidi, S. Kazeminia, Design of high-speed high-precision voltage-mode MAX-MIN circuits with low area and low power consumption, in Proc. European Conference on Circuit Theory and Design, Aug. 23–27 (2009), pp. 351–354

    Chapter  Google Scholar 

  44. M.A. Tehrani, F. Safaei, M.H. Moaiyeri, K. Navi, Design and implementation of multi-stage interconnection networks using quantum-dot cellular automata. Microelectron. J. 42(6), 913–922 (2011)

    Article  Google Scholar 

  45. S. Vlassis, K. Doris, S. Siskos, I. Pitas, Analog implementation of erosion/dilation, median and order statistics filters. Pattern Recognit. 33(6), 1023–1032 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moaiyeri, M.H., Chavoshisani, R., Jalali, A. et al. High-Performance Mixed-Mode Universal Min-Max Circuits for Nanotechnology. Circuits Syst Signal Process 31, 465–488 (2012). https://doi.org/10.1007/s00034-011-9344-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9344-3

Keywords

Navigation