Skip to main content

An Objective Video Quality Metric for Compressed Stereoscopic Video

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Stereoscopic video create the impression of depth by using two slightly different viewpoints. Conventional video quality assessment methods for 2D video are not suitable for stereoscopic video, so a new video quality assessment model for stereoscopic video is needed. In this paper, we propose a new objective video quality metric for compressed stereoscopic video. The proposed algorithm uses blocking artifacts, blurring in edge regions and video quality difference between two views. Blocking artifacts and blurring in edge regions are distortion appeared in the compressed video, and they are widely used in conventional video quality model. Difference in video quality between two views considers 3D effect of stereoscopic video. To verify the performance of the proposed algorithm, we performed subjective evaluation of stereoscopic video, and we confirmed that the proposed algorithm is superior to the conventional algorithms in respect to correlation with the subjective evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Benoit, P.L. Callet, P. Campisi, R. Cousseau, Quality assessment of stereoscopic images, EURASIP J. Image Video Process. doi:10.1155/2008/659024 (2008)

  2. P. Campisi, P.L. Callet, E. Marini, Stereoscopic images quality assessment, in Proc. 15th European Signal Processing Conference (EUSIPCO) (2007)

    Google Scholar 

  3. M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, in Proc. of IEEE Int. Conf. on Image Process, ICIP 2003, vol. 3 (2003), pp. 185–188

    Google Scholar 

  4. G. Chen, C. Yang, S. Xie, Gradient-based structural similarity for image quality assessment, in Proc. of IEEE Int. Conf. on Image Process, ICIP 2006 (2006), pp. 2929–2932

    Google Scholar 

  5. G. Chen, C. Yang, L. Po, S. Xie, Edge-based structural similarity for image quality assessment, in Proc. International Conference on Acoustics, Speech and Signal Processing, vol. II (2006), pp. 933–936

    Google Scholar 

  6. International Telecommunication Union, Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference. ITU-T Recomm. J. 144 (2004)

  7. International Telecommunication Union, Perceptual visual quality measurement techniques for multimedia services over digital cable television networks in the presence of a reduced bandwidth reference. ITU-T Recomm. J. 246 (2008)

  8. International Telecommunication Union, Objective perceptual multimedia video quality measurement in the presence of a full reference. ITU-T Recomm. J. 247 (2008)

  9. International Telecommunication Union, Subjective video quality assessment methods for multimedia applications. ITU-T Recomm. P. 910 (1999)

  10. ISO/IEC JTC1 WG11 MPEG, Text of ISO/IEC 14496-10:200X/FDAM 1 Multi-view Video Coding, w9978 (2008)

  11. A. Khan, S. Lingfen, E. Ifeachor, An ANFIS-based hybrid video quality prediction model for video streaming over wireless networks, in Proc. of Next Generation Mobile Appl., Services and Technol. (2008), pp. 357–362

    Google Scholar 

  12. T. Kusuma, H. Zepernick, M. Caldera, On the development of a reduced-reference perceptual image quality metric, in Proc. of the 2005 Systems Commun. (2005), pp. 178–184

    Google Scholar 

  13. C. Lee, S. Cho, J. Choe, T. Jung, W. Ahn, Edge degradation for objective video quality metrics, in Proc. of SPIE and IS&T Electronic Imaging, vol. 5308 (2004), pp. 1253–1260

    Chapter  Google Scholar 

  14. C. Lee, S. Cho, J. Choe, T. Jeong, W. Ahn, E. Lee, Objective video quality assessment. Opt. Eng. 45(1), 017004 (2006), 11 pp.

    Article  Google Scholar 

  15. D. Min, K. Sohn, Cost aggregation and occlusion handling with WLS in stereo matching. IEEE Trans. Image Process. 17(8), 1431–1442 (2008)

    Article  MathSciNet  Google Scholar 

  16. S. Pastoor, M. Wopking, 3-D displays: a review of current technologies. Displays 17(2), 100–110 (1997)

    Article  Google Scholar 

  17. M. Pinson, S. Wolf, A new standardized method for objectively measuring video quality. IEEE Trans. Broadcast. 50(3), 312–322 (2004)

    Article  Google Scholar 

  18. A. Puri, R. Kollarits, B. Haskell, Basics of stereoscopic video, new compression results with MPEG-2 and a proposal for MPEG-4. Signal Process Image Commun. 10(1–3), 201–234 (1997)

    Article  Google Scholar 

  19. D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)

    Article  MATH  Google Scholar 

  20. L. Stelmach, W. Tam, Stereoscopic image coding: effect of disparate image-quality in left- and right-eye views. Signal Process. Image Commun. 14(1–2), 111–117 (1998)

    Article  Google Scholar 

  21. H. Tong, M. Li, H. Zhang, C. Zhang, Blur detection for digital images using wavelet transform, in Proc. of IEEE Int. Conf. on Multimed. & Expo (2004), pp. 17–20

    Google Scholar 

  22. G. Triantafyllidis, D. Tzovaras, M. Strintzis, Blocking artifact detection and reduction in compressed data. IEEE Trans. Circuits Syst. Video Technol. 12(10), 877–890 (2002)

    Article  Google Scholar 

  23. D. Turaga, Y. Chen, J. Caviedes, No reference PSNR estimation for compressed pictures. Signal Process. Image Commun. 19(2), 173–184 (2004)

    Article  Google Scholar 

  24. Z. Wang, A. Bovik, Modern Image Quality Assessment (Morgan & Claypool, 2006)

  25. Z. Wang, A. Bovik, Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  26. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Z. Wang, E. Simoncelli, A. Bovik, Multi-scale structural similarity for image quality assessment, in Proc. of IEEE Asilomar Conf. on Signals, Syst., and Comput., vol. 2 (2003), pp. 1398–1402

    Google Scholar 

  28. Z. Wang, E. Simoncelli, Translation insensitive image similarity in complex wavelet domain, in IEEE Int. Conf. on Acoust., Speech, & Signal Process., vol. 2 (2005), pp. 573–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanghoon Sohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, J., Liu, X., Kim, D. et al. An Objective Video Quality Metric for Compressed Stereoscopic Video. Circuits Syst Signal Process 31, 1089–1107 (2012). https://doi.org/10.1007/s00034-011-9369-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9369-7

Keywords