Skip to main content

Particle Swarm Optimization of Compression Measurement for Signal Detection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the random matrix in the compressive and subspace compressive detectors is optimized based on the particle swarm optimization (PSO). The PSO, which belongs to swarm intelligent theory, is used for the first time to solve the optimization problem of the random projection matrix, leading to an improved version of the conventional compressive and subspace compressive detectors. Simulation results show the proposed PSO-based detectors can achieve a better detection performance and require fewer measurements than the traditional compressive detectors without using PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.T. Boufounos, R.G. Baraniuk, 1-Bit compressive sensing, in Proceedings of the 42nd Annual Conference on Information Science and System, Mar. (2008), pp. 16–21

    Chapter  Google Scholar 

  2. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  3. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  4. E. Candes, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.A. Davenport, M.B. Wakin, R.G. Baraniuk, Signal processing with compressive measurements. IEEE J. Sel. Top. Signal Process. 4(2), 445–460 (2010)

    Article  Google Scholar 

  6. M. Davenport, M. Duarte, M. Wakin, J. Laska, D. Takhar, K. Kelly, R. Baraniuk, The smashed filter for compressive classification and target recognition, in Proceedings of SPIE Symp. Electron. Imaging: Comput. Imaging, San Jose, CA, Jan. (2007)

    Google Scholar 

  7. M.A. Davenport, M.B. Wakin, R.G. Baraniuk, Detection and estimation with compressive measurements, Tech. Rep., Dept. of ECE, Rice University (2006)

  8. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. M. Duarte, M. Davenport, M. Wakin, R. Baraniuk, Sparse signal detection from incoherent projections, in Proceedings of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, May (2006), pp. 305–308

    Google Scholar 

  10. M. Duarte, M. Davenport, M. Wakin, J. Laska, D. Takhar, K. Kelly, R. Baraniuk, Multiscale random projections for compressive classification, in Proceedings of IEEE Int. Conf. Image Process. (ICIP), San Antonio, TX, Sep. (2007), pp. 161–164

    Google Scholar 

  11. J. Haupt, R. Nowak, Compressive sampling for signal detection, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Washington D.C., USA (2007), pp. 1509–1512

    Google Scholar 

  12. J. Haupt, R. Castro, R. Nowak, G. Fudge, A. Yeh, Compressive sampling for signal classification, in Proceedings of Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, October (2006), pp. 1430–1434

    Chapter  Google Scholar 

  13. A. Husseinzadeh Kashan, B. Karimi, A discrete particle swarm optimization algorithm for scheduling parallel machines. Comput. Ind. Eng. 56(1), 216–223 (2009)

    Article  Google Scholar 

  14. S.M. Kay, Fundamentals of Statistical Signal Processing Detection Theory, vol. 2 (Prentice Hall, New York, 1998)

    Google Scholar 

  15. J. Kennedy, R.C. Eberhart, Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 5(3), 1942–1948 (1995)

    Article  Google Scholar 

  16. J. Tropp, A. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  17. P. Vary, R. Martin, Digital Speech Transmission: Enhancement, Coding and Error Concealment (Wiley, New York, 2005)

    Google Scholar 

  18. Z. Wang, G.R. Arce, B.M. Sadler, Subspace compressive detection for sparse signals, in Proceedings of ICASSP, Las Vegas, NV, Mar. (2008), pp. 3873–3876

    Google Scholar 

  19. Z. Wang, New sampling and detection approaches for compressed sensing and their application to ultra wideband communications. Dissertation for the Doctoral Degree, University of Delaware (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongfang Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Song, R. & Wang, W. Particle Swarm Optimization of Compression Measurement for Signal Detection. Circuits Syst Signal Process 31, 1109–1126 (2012). https://doi.org/10.1007/s00034-011-9371-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9371-0

Keywords