Abstract
This paper deals with reduction of computational complexities in dynamic systems. This paper develops a novel method of reducing complexities with use of control moments of the system. Though the proposed method is validated through channel estimation in this paper, the same can be equally applied to any other dynamic systems. Encouraging results given in this paper prove that the computational complexities can be reduced up to 104 with a marginal affordable loss of performance.
Similar content being viewed by others
References
M. Bardet, I. Boussaada, Complexity reduction of C-algorithm. Appl. Math. Comput. 217(17), 7318–7323 (2011)
C. Beattie, S. Gugercin, S. Wyatt, Inexact solves in interpolatory model reduction. Linear Algebra Appl. 436(8), 2916–2943 (2012)
A. Bentayeb, N. Maamri, D. Mehdi, Moments based synthesis approach: comparison with H ∞ design, in IFAC DECOM-TT, Istanbul, Turkey (2003)
V.A. Chandrasetty, S.M. Aziz, An area efficient LDPC decoder using a reduced complexity min-sum algorithm. Integr. VLSI J. 45(2), 141–148 (2012)
Z. Ding, L. Ye, Blind Equalization and Identification (Dekker, New York, 2001)
T. Gueddar, V. Dua, Disaggregation–aggregation based model reduction for refinery-wide optimization. Comput. Chem. Eng. 35(9), 1838–1856 (2011)
H.-L. Hung, Using evolutionary computation technique for trade-off between performance peak-to average power ration reduction and computational complexity in OFDM systems. Comput. Electr. Eng. 37(1), 57–70 (2011)
M. Krasnyk, M. Mangold, S. Ganesan, L. Tobiska, Numerical reduction of a crystallizer model with internal and external coordinates by proper orthogonal decomposition. Chem. Eng. Sci. 70, 77–86 (2012)
E. Kreyzig, Advanced Engineering Mathematics, 8th edn. (Wiley, New York, 1999)
E.V. Kurmyshev, J.T. Guillen-Bonilla, Complexity reduced coding of binary pattern units in image classification. Opt. Lasers Eng. 49(6), 718–722 (2011)
S. Li, L.-M. Song, T.-S. Qiu, Steady-state and tracking analysis of fractional lower-order constant modulus algorithm. Circuits Syst. Signal Process. 30(6), 1275–1288 (2011)
X. Li, J. Dezert, F. Smarandache, X. Huang, Evidence supporting measure of similarity for reducing the complexity in information fusion. Inf. Sci. 181(10), 1818–1835 (2011)
Y.-T. Li, Z. Bai, W.-W. Lin, Y. Su, A structured quasi-Arnoldi procedure for model order reduction of second-order systems. Linear Algebra Appl. 436(8), 2780–2794 (2012)
T.-T. Lin, F.-H. Hwang, A novel CFO estimator with joint bisection-searching and complexity reduction technique for uplink MC-CDMA systems. Expert Syst. Appl. 39(3), 3145–3152 (2012)
R. Lu, H. Li, A. Xue, J. Zheng, Q. She, Quantized H ∞ filtering for different communication channels. Circuits Syst. Signal Process. 31(2), 501–519 (2012)
N. Maamri, J.C. Trigeassou, PID design for time delayed systems by the method of moments, in European Control Conference, Groningen, Holland (1993)
N. Maamri, A. Bentayeb, J.-C. Trigeassou, Design and iterative optimization of reduced robust controllers with equality-constraints, in ROCOND, Milan (2003)
D.W. Marquardt, An algorithm for least-squares estimation of non linear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)
F. Monroux, Méthodologie générale de synthèse de correcteurs par la méthode des moments, approche mixte: fréquentielle et temporelle, Thèse de doctorat, Université de Poitiers (1999)
S.L. Napelenok, K.M. Foley, D. Kang, R. Mathur, T. Pierce, S. Trivikrama Rao, Dynamic evaluation of regional air quality model’s response to emission reduction in the presence of uncertain emission inventories. Atmos. Environ. 45(24), 4091–4098 (2011)
R.O. Preda, D.N. Vizireanu, A robust wavelet based video watermarking scheme for copyright protection using the human visual system. J. Electron. Imaging 20, 013022 (2011)
L. Scrucca, Model-based SIR for dimension reduction. Comput. Stat. Data Anal. 55(11), 3010–3026 (2011)
A.M. Tartakovsky, A. Panchenko, K. Ferris, Dimension reduction method for ODE fluid models. J. Comput. Phys. 230(23), 8554–8572 (2011)
D.N. Vizireanu, S. Halunga, G. Marghescu, Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 023018 (2010)
D.N. Vizireanu, Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 17, 013007 (2008)
D.N. Vizireanu Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 01302 (2007)
A.C. Yang, S.-J. Tsai, C.-H. Yang, C.-H. Kuo, T.-J. Chen, C.-J. Hong, Reduced physiologic complexity is associated with poor sleep in patients with major depression and primary insomnia. J. Affect. Disord. 131(1–3), 179–185 (2011)
H. Yoo, F. Guilloud, R. Pyndiah, PAPR reduction for LDPC coded OFDM systems using binary masks and optimal LLR estimation. Signal Process. 91(11), 2606–2614 (2011)
H. Zhang, L. Li, W. Li, Independent component analysis based on fast proximal gradient. Circuits Syst. Signal Process. 31(2), 583–593 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panda, R.N., Padhy, S.K., Prasad, S. et al. Reduced Complexity Dynamic Systems Using Approximate Control Moments. Circuits Syst Signal Process 31, 1731–1744 (2012). https://doi.org/10.1007/s00034-012-9406-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-012-9406-1