Skip to main content

Advertisement

Log in

Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low SNR due to noise induced bias. The IQML cost function can be “denoised” by eliminating the noise contribution: the resulting algorithm, Denoised IQML (DIQML), gives consistent estimates and outperforms IQML. Furthermore, DIQML is asymptotically globally convergent and hence insensitive to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML algorithms can immediately be applied also to other subspace problems such as frequency estimation of sinusoids in noise or direction of arrival estimation with uniform linear arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Abed Meraim, E. Moulines, P. Loubaton, Prediction error method for second-order blind identification. IEEE Trans. Signal Process. 45(3), 694–705 (1997)

    Article  Google Scholar 

  2. F. Alberge, P. Duhamel, M. Nikolova, Adaptive solution for blind identification/equalization using deterministic maximum likelihood. IEEE Trans. Signal Process. 50(4), 923–936 (2002)

    Article  Google Scholar 

  3. J. Ayadi, E. de Carvalho, D. Slock, Blind and semi-blind maximum likelihood methods for FIR multichannel identification, in Proc. ICASSP 98 Conf., Seattle, USA (1998)

    Google Scholar 

  4. J. Ayadi, L. Deneire, D. Slock, Channel-based blind multichannel identification without order overestimation problems, in 13th Int’l Conf. on Digital Signal Processing, Santorini, Greece (1997)

    Google Scholar 

  5. J. Ayadi, D. Slock, Blind channel estimation and joint order detection by MMSE ZF equalization. in IEEE Vehic. Tech. Conf. (VTC), Amsterdam, The Netherlands (1999)

    Google Scholar 

  6. J. Ayadi, D. Slock, Multichannel estimation by blind MMSE ZF equalization, in IEEE-SP Workshop on Sig. Proc. Advances in Wireless Comm’s (SPAWC), Annapolis, Maryland, USA (1999)

    Google Scholar 

  7. L. Baccala, S. Roy, A new time-domain blind identification method. IEEE Signal Process. Lett. 1(6), 89–91 (1994)

    Article  Google Scholar 

  8. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 35(10), 1081–1089 (1986)

    Article  Google Scholar 

  9. E. de Carvalho, J. Cioffi, D. Slock, Cramer–Rao bounds for blind multichannel estimation, in IEEE Globecom Conf., San Fransisco, USA (2000)

    Google Scholar 

  10. E. de Carvalho, L. Deneire, D. Slock, Blind and semi-blind maximum likelihood techniques for multiuser multichannel identification, in European Association for Signal Processing EUSIPCO, Island of Rhodes, Greece, vol. 98 (1998)

    Google Scholar 

  11. E. de Carvalho, D. Slock, Maximum-likelihood blind equalization of multiple FIR channels, in Proc. ICASSP 96 Conf., Atlanta, USA (1996)

    Google Scholar 

  12. E. de Carvalho, D. Slock, Asymptotic performance of ML methods for semi-blind channel estimation, in Proc. Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA (1997)

    Google Scholar 

  13. E. de Carvalho, D. Slock, Identifiability conditions for blind and Semi-Blind multichannel estimation, in European Association for Signal Processing EUSIPCO, Island of Rhodes, Greece, vol. 98 (1998)

    Google Scholar 

  14. E. de Carvalho, D. Slock, Burst mode equalization: optimal approach and suboptimal continuous–processing approximation. Signal Process. (EURASIP) (2000). Special issue on Signal Processing Technologies for short-burst Wireless Communications

  15. E. de Carvalho, D. Slock, Blind and semi-blind FIR multichannel estimation: identifiability conditions. IEEE Trans. Signal Process. 52, 1053–1064 (2004)

    Article  MathSciNet  Google Scholar 

  16. K. Chan, H. So, M.T. Amin, C. Chan, W. Lau, Iterative quadratic maximum likelihood based estimator for a biased sinusoid. EURASIP Signal Process. 90(6), 2083–2086 (2010)

    Article  MATH  Google Scholar 

  17. N. Chotikakamthorn, J. Chambers, On the IQML algorithm for multiple signal parameter estimation. IEE Proc. Radar Sonar Navig. 5(144), 237–244 (1997)

    Article  Google Scholar 

  18. J. Chun, Fast array algorithms for structured matrices. Ph.D. Thesis, Stanford University (1989)

  19. D. Gesbert, P. Duhamel, S. Mayrargue, Blind least–squares criteria for joint data/channel estimation, in Proc. IEEE Digital Signal Processing Workshop, (1996)

    Google Scholar 

  20. G. Giannakis, S. Halford, Asymptotically optimal blind fractionally-spaced channel estimation and performance analysis. IEEE Trans. Signal Process. 45(7), 1815–1830 (1997)

    Article  MATH  Google Scholar 

  21. M. Gürelli, C. Nikias, A new eigenvector-based algorithm for multichannel blind deconvolution of input colored signals, in Proc. ICASSP, (1993), pp. 448–451

    Google Scholar 

  22. G. Harikumar, Y. Bresler, Analysis and comparative evaluation of techniques for multichannel blind deconvolution, in Proc. 8th IEEE Sig. Proc. Workshop Statistical Signal and Array Proc., Corfu, Greece (1996), pp. 332–335

    Chapter  Google Scholar 

  23. Y. Hua, The most efficient implementation of the IQML algorithm. IEEE Trans. Signal Process. 42(8), 2203–2204 (1994)

    Article  Google Scholar 

  24. Y. Hua, Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Trans. Signal Process. 44(3), 661–672 (1996)

    Article  Google Scholar 

  25. T. Kailath, A. Sayed, Displacement structure: theory and applications. SIAM Rev. 37(3), 297–386 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Kristensson, M. Jansson, B. Ottersten, Modified IQML and weighted subspace fitting without eigendecomposition. Signal Process. 79(1), 29–44 (1999)

    Article  MATH  Google Scholar 

  27. M. Kristensson, B. Ottersten, D. Slock, Blind subspace identification of a BPSK communication channel, in Proc. of the 30th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA (1996)

    Google Scholar 

  28. V. Mani, R. Rose, Direction of arrival estimation and beamforming of multiple coherent UWB signals, in Proc. ICC 2010 Conf., Cape Town, USA (2010)

    Google Scholar 

  29. E. Moulines, P. Duhamel, J. Cardoso, S. Mayrargue, Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Process. 43(2), 516–526 (1995)

    Article  Google Scholar 

  30. M. Osborne, G. Smyth, A modified Prony algorithm for fitting functions defined by difference equations. SIAM J. Sci. Stat. Comput. 12(2), 362–382 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Pité, P. Duhamel, Bilinear methods for blind channel equalization: (no) local minimum issue, in Proc. ICASSP 98 Conf., Seattle, USA (1998)

    Google Scholar 

  32. B. Ramkumar, T. Bose, M. Radenkovic, Combined blind equalization and automatic modulation classification for cognitive radios, in IEEE DSP/SPE 2009 (2009)

    Google Scholar 

  33. B. Ramkumar, T. Bose, M. Radenkovic, Robust multiuser automatic modulation classifier for multipath fading channels, in IEEE Symposium on New Frontiers in Dynamic Spectrum, (2010)

    Google Scholar 

  34. D. Slock, Blind Fractionally-Spaced equalization, perfect-reconstruction filter banks and multichannel linear prediction, in Proc. ICASSP 94 Conf., Adelaide, Australia (1994)

    Google Scholar 

  35. D. Slock, Blind joint equalization of multiple synchronous mobile users using oversampling and/or multiple antennas, in Proc. 28th Asilomar Conference on Signal, Systems & Computers, Pacific Grove, CA (1994)

    Google Scholar 

  36. D. Slock, C. Papadias, Blind fractionally-spaced equalization based on cyclostationarity, in Proc. Vehicular Technology Conf., Stockholm, Sweden (1994)

    Google Scholar 

  37. P. Stoica, J. Li, T. Söderström, On the Inconsistency of IQML. Signal Process. 185–190 (1997). doi:10.1016/S0165-1684(96)00167-3

  38. S. Talwar, Blind space-time algorithms for wireless communication system. Ph.D. Thesis, Stanford University (1996)

  39. S. Talwar, M. Viberg, A. Paulraj, Blind separation of synchronous co-channel digital signals using an antenna array. Part I. Algorithms. IEEE Trans. Signal Process. 44(5), 1184–1197 (1996)

    Article  Google Scholar 

  40. L. Tong, S. Perreau, Multichannel blind identification: from subspace to maximum likelihood methods. Proc. IEEE 86(10), 1951–1968 (1998)

    Article  Google Scholar 

  41. L. Tong, Q. Zhao, Joint order detection and blind channel estimation by least squares smoothing. IEEE Trans. Signal Process. 47(9), 2345–2355 (1999)

    Article  MATH  Google Scholar 

  42. H. Trigui, D. Slock, Cochannel interference cancellation within the current GSM standard, in Proc. Workshop COST254, Toulouse, France (1997)

    Google Scholar 

  43. A. van der Veen, Analytical method for blind binary signal separation. IEEE Trans. Signal Process. 45(4), 1078–1082 (1997)

    Article  Google Scholar 

  44. A.V. der Veen, S. Talwar, A. Paulraj, Blind estimation of multiple digital signals transmitted over FIR channels. IEEE Signal Process. Lett. 2(5), 99–102 (1995)

    Article  Google Scholar 

  45. H. Wu, M. Saquib, Z. Yun, Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Trans. Wirel. Commun. 7(8), 3098–3105 (2008)

    Article  Google Scholar 

  46. G. Xu, H. Liu, L. Tong, T. Kailath, A least squares approach to blind channel identification. IEEE Trans. Signal Process. 43(12), 2982–2993 (1995)

    Article  Google Scholar 

  47. H. Zhan, J. Ayadi, J. Farserotu, J.Y.L. Boudec, Impulse radio ultra-wideband ranging based on maximum likelihood estimation. IEEE Trans. Wirel. Commun. 8(12), 2982–2993 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

EURECOM’s research is partially supported by its industrial members: BMW Group Research Technology, Bouygues Telecom, Cisco, Hitachi, ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thales. The research reported herein was also partially supported by the French ANR project SESAME and by the EU FET project CROWN and Strep WHERE2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir-Mohamad Omar.

Appendix A: Asymptotic Performance Study of DIQML and PQML

Appendix A: Asymptotic Performance Study of DIQML and PQML

1.1 A.1 Asymptotic behavior of PQML (M→∞)

We prove here that PQML needs a consistent initialization in order to give a consistent estimate of the channel.

1.1.1 A.1.1 Inconsistent Initialization

The element (i,j) of the “Hessian” \({\mathcal{P}}(h)\) of the PQML cost function with λ=1 (introducing the generalized eigenvalue does not change the following arguments much, see the next subsection also) can be written as

(40)

Recall that \(\mathrm{E} \boldsymbol{Y}\boldsymbol{Y}^{H} = \boldsymbol {X}\boldsymbol{X}^{H} + {\sigma_{v}^{2}}I = {\mathcal{T}}(h^{o})AA^{H}{\mathcal{T}}^{H}(h^{o}) +{\sigma_{v}^{2}}I\). Asymptotically both terms \({\mathcal{P}}_{1}(h)\) and \({\mathcal{P}}_{2}(h)\) differ from their expected value by \({\mathcal{O}}_{p}(\frac{1}{\sqrt{M}})\), and

(41)
(42)

Let \(\mathrm{E} {\mathcal{P}}_{i}(h) = \mathrm{E} {\mathcal{P}}_{i1}(h) + \mathrm{E} {\mathcal{P}}_{i2}(h) , i=1,2\), be a decomposition in signal and noise terms. Note that \(\mathrm{E} {\mathcal{P}}_{12}(h) = \mathrm{E} {\mathcal{P}}_{22}(h)\) so that we have cancellation of the noise terms in \(\mathrm{E} {\mathcal{P}}(h)\). For hαh o, for any α∈ℂ, \(\mathrm{E}{\mathcal{P}}(h) \neq \mathrm{E}{\mathcal{P}}_{11}(h)\) (i.e. the noise-free IQML Hessian) because of \(\mathrm{E}{\mathcal{P}}_{21}(h)\), the signal contribution in \(\mathrm{E}{\mathcal{P}}_{2}(h)\). So, since \(\mathrm{E}{\mathcal{P}}_{21}(h) h^{o} = {\mathcal{O}}(1)\) if \(h-\alpha h^{o}={\mathcal{O}}(1)\) for any α∈ℂ, an iteration of PQML yields asymptotically an inconsistent estimate for an inconsistent initialization.

1.1.2 A.1.2 Consistent Initialization

Assume h is a consistent estimate of h o, i.e. h=h oh, where typically \(\Delta h = {\mathcal{O}}_{p}(\frac{1}{\sqrt{M}})\). We get

(43)

whereas the other term in \(\mathrm{E}{\mathcal{P}}(h)\), \(\mathrm {E}{\mathcal{P}}_{11}(h)\), can be verified to be of order 1. So \({\mathcal{P}}_{21}(h)\) is asymptotically negligible: with a consistent initialization, the role of \({\mathcal{P}}_{2}\) is to remove the noise contribution in \({\mathcal{P}}_{1}\). Apart from terms in \({\mathcal{O}}_{p}(\frac{1}{\sqrt{M}})\), \({\mathcal{P}}\) becomes asymptotically equivalent to the noise-free IQML Hessian, so the estimation of h is consistent. So an iteration of PQML yields asymptotically a consistent estimate for a consistent initialization.

1.2 A.2 Performance of DIQML and PQML

We consider the following general generalized eigenvalue problem for blind channel estimation:

$$ \min_{h,\lambda} h^H \bigl\{ \widehat {F}\bigl(\boldsymbol{Y}, h^c\bigr) - \lambda \widehat{G} \bigl(\boldsymbol{Y},h^c \bigr) \bigr\} h $$
(44)

subject to \(\widehat{F}(\boldsymbol{Y}, h^{c}) - \lambda \widehat {G}(\boldsymbol{Y},h^{c})\geq0\) and constraints on h. h c is a consistent estimate of h. \(\widehat{F}(\boldsymbol{Y},h^{c})=\frac{1}{M}{\mathcal{Y}}^{H} {\mathcal{R}}^{+}(h^{c}) {\mathcal{Y}}={\mathcal{P}}_{1}(h^{c})\) for DIQML and PQML, \(\widehat{G}(\boldsymbol{Y},h^{c})=\frac{1}{M}{\mathcal{D}}(h^{c})\) for DIQML and \(\widehat{G}(\boldsymbol{Y},h^{c})=\frac{1}{M}{\mathcal{B}}^{H}(h^{c}) {\mathcal{B}}(h^{c})={\mathcal{P}}_{2}(h^{c})\) for PQML. It can be shown that the channel estimation performance given by (44) is asymptotically unchanged when one replaces \(\widehat{F}(\boldsymbol {Y}, h^{c})\) and \(\widehat{G}(\boldsymbol{Y},h^{c})\) by \(\widehat{F}(\boldsymbol{Y})=\widehat{F}(\boldsymbol{Y}, h^{o})\) and \(\widehat{G}(\boldsymbol{Y})=\widehat{G}(\boldsymbol{Y},h^{o})\), respectively (since \({\mathcal{O}}(\|\Delta h^{c}\|^{2}) = {\mathcal{O}}_{p}(\frac{1}{M})\)). Asymptotically, we also have

$$ \left \{ \everymath{\displaystyle} \begin{array}{l} \widehat{F}(\boldsymbol{Y}) = F^o + {\mathcal{O}}_p\biggl(\frac {1}{\sqrt{M}}\biggr), \\ [12pt] \widehat{G}(\boldsymbol{Y}) = G^o + {\mathcal{O}}_p\biggl(\frac {1}{\sqrt{M}}\biggr), \end{array} \right . $$
(45)

where \(F^{o}(h^{c}) = \mathrm{E} \widehat{F}(\boldsymbol{Y},h^{c})\), \(G^{o}(h^{c}) = \mathrm{E} \widehat{G}(\boldsymbol{Y},h^{c})\) and F o=F o(h o), G o=G o(h o). Although we will not need this, one may also remark that \(F^{o}(h^{o}) = \lim_{M\rightarrow\infty}F^{o}(h^{o}) + {\mathcal{O}}(\frac{1}{M})\) and similarly for G o.

1.2.1 A.2.3 Asymptotic Expression for Δλ

The solution of (44) for λ and h is the minimal generalized eigenvalue and corresponding eigenvector of \(\widehat{F}(\boldsymbol{Y})\) and \(\widehat{G}(\boldsymbol{Y})\).

$$ \widehat{F}(\boldsymbol{Y}) \hat{{h}}- \hat{\lambda} \widehat {G}( \boldsymbol{Y}) \hat{{h}}= 0 \quad \Rightarrow\quad \hat{\lambda}= \frac{\hat{{h}}^H \widehat{F}(\boldsymbol{Y}) \hat{{h}}}{\hat{{h}}^H \widehat{G} (\boldsymbol{Y}) \hat{{h}}} . $$
(46)

We denote \(\hat{{h}}=h^{o}+\Delta h\), and \(\hat{\lambda}=\lambda^{o} +\Delta\lambda\), where \(\Delta h \stackrel{M \rightarrow\infty}{\longrightarrow} 0\), \(\Delta\lambda\stackrel{M \rightarrow\infty}{\longrightarrow} 0\). We have \(\lambda^{o}= \frac{h^{o H} F^{o} h^{o}}{h^{o H} G^{o} h^{o}}\) and, performing a series expansion, we get

$$ \Delta\lambda= \frac{h^{o H} [\widehat{F}(\boldsymbol{Y})-\lambda^o\widehat {G}(\boldsymbol{Y})] h^{o}}{h^{o H} G^o h^{o}} + {\mathcal{O}}_p\biggl( \frac{1}{M}\biggr) . $$
(47)

1.2.2 A.2.4 Asymptotic Expressions for Δh and \(C_{\Delta h\Delta h}=\mathrm{E}(\hat{h}-h^{o}) (\hat{h}-h^{o})^{H}\)

After substitution of the solution for λ, the estimation problem for h becomes

$$ \min_{h} \bigl\{ h^H \bigl\{ \widehat{F}(\boldsymbol{Y}) - \hat{\lambda }(\boldsymbol{Y})\widehat{G}(\boldsymbol{Y}) \bigr\} h = {\mathcal{F}} (h) \bigr\} . $$
(48)

The estimation of h is performed under constraints \({\mathcal{K}}(h_{R})=0\) with tangent subspace \({\mathcal{M}}_{h_{R}^{o}}\) at \(h_{R}=h_{R}^{o}\). Let \({\mathcal{V}}_{R}^{o}\) be a matrix whose columns form an orthonormal basis of \({\mathcal{M}}_{h_{R}^{o}}\). Then locally we can write \(\Delta h_{R} = {\mathcal{V}}_{R}^{o} \theta\) where θ are the unconstrained parameter variations. A Taylor series expansion of \({\mathcal{F}}(h)\) at h o in terms of θ gives

(49)

Optimization of (49) up to second order w.r.t. θ gives for \(\Delta h_{R} = {\mathcal{V}}_{R}^{o} \theta\)

$$ \Delta h_R = {\mathcal{V}}_R^o \biggl({ \mathcal{V}}_R^{o T} \frac{\partial^2 {\mathcal{F}}(h^o)}{\partial h_R\partial h_R^T} {\mathcal{V}}_R^o \biggr)^{-1}{\mathcal{V}}_R^{o T} \frac{\partial {\mathcal{F}}(h^o)}{\partial h_R} $$
(50)

assuming that the matrix inverse exists (which will be the case here). The expression becomes easier to work with when expressed in terms of complex quantities (see [12]):

$$ \Delta h = {\mathcal{V}}^o \biggl({\mathcal{V}}^{o H} \frac{\partial}{\partial h^*} \biggl(\frac{\partial{\mathcal{F}}(h^o)}{\partial h^*} \biggr)^H {\mathcal{V}}^o \biggr)^{-1}{\mathcal{V}}^{o H} \frac{\partial {\mathcal{F}}(h^o)}{\partial h^*} . $$
(51)

For the constraints (5), (6) or equivalent, the columns of \({\mathcal{V}}^{o}\) form a basis for the orthogonal complement of h o. We shall also require

$$ \left \{ \everymath{\displaystyle} \begin{array}{l} J^{(1)}_{hh} = \mathrm{E} \biggl(\frac{\partial{\mathcal{F}}(h^o)}{\partial h^* } \biggr) \biggl(\frac{\partial{\mathcal{F}}(h^o)}{\partial h^* } \biggr)^H ,\\ [12pt] J^{(2)}_{hh} = \mathrm{E} \frac{\partial}{\partial h^*} \biggl(\frac{\partial{\mathcal{F}}(h^o)}{\partial h^*} \biggr)^H . \end{array} \right . $$
(52)

Note that if \({\mathcal{F}}\) would have been the log likelihood function, then \(J^{(1)}_{hh}=-J^{(2)}_{hh}\), but this equality does not hold here. We now obtain

(53)

For the quadratic problem in (48), we have (using (47) and the fact that ΔF and ΔG have zero mean):

$$ J^{(2)}_{hh} = \mathrm{E} \bigl(\widehat{F}(\boldsymbol{Y}) - \hat{\lambda}(\boldsymbol{Y}) \widehat{G}(\boldsymbol{Y} ) \bigr)= F^o - \lambda^o G^o +{\mathcal{O}}\biggl( \frac{1}{M}\biggr), $$
(54)

where we shall neglect the last term.

1.2.3 A.2.5 Application to DIQML and PQML

Specializing to DIQML and PQML, we get first of all \(F^{o} - \lambda^{o} G^{o} = \frac{1}{M} {\mathcal{X}}^{H} {\mathcal{R}}^{+} {\mathcal{X}}\). To show the relation of this expression to the CRB, consider for any h, h′:

(55)

where \({\mathcal{T}}(h)A = {\mathcal{A}}h\). Hence \(\sigma_{v}^{-2} {\mathcal{X}}^{H} {\mathcal{R}}^{+} {\mathcal{X}}= \sigma_{v}^{-2} {\mathcal{A}}^{H} P^{\perp}_{{\mathcal{T}}(h^{o})}{\mathcal{A}}\), which is the Fisher information matrix for deterministic ML. As F oλ o G o admits h o as unique eigenvector corresponding to the eigenvalue zero, and \({\mathcal{V}}^{o}\) spans the orthogonal complement of h o,

$$ {\mathcal{V}}^o \bigl({{\mathcal{V}}^o}^H J^{(2)}_{hh} {\mathcal{V}}^o \bigr)^{-1}{ \mathcal{V}}^{o H} = \bigl(F^o - \lambda^o G^o \bigr)^{+} , $$
(56)

the Moore–Penrose pseudo-inverse of F oλ o G o. Hence

$$ \Delta h = \bigl(F^o - \lambda^o G^o \bigr)^{+} \frac{\partial{\mathcal{F}}(h^o)}{\partial h^*} $$
(57)

neglecting \({\mathcal{O}}_{p}(\frac{1}{M})\) terms. Now, using (47), we also get

(58)

which leads to

$$ \Delta h = M \bigl({\mathcal{X}}^H {\mathcal{R}}^+ {\mathcal{X}} \bigr)^+ \biggl[I - \frac{G^o h^o h^{o H}}{h^{o H} G^o h^o} \biggr] \bigl(\widehat{F}- \lambda^o \widehat{G} \bigr)h^o $$
(59)

neglecting \({\mathcal{O}}_{p}(\frac{1}{M})\) terms. For DML, the same kind of analysis gives [12]:

$$ \Delta h_{\mathrm{DML}} = M \bigl({\mathcal{X}}^H {\mathcal{R}}^+ { \mathcal{X}} \bigr)^+ \bigl(\widehat{F}- \lambda^o \widehat{G} \bigr)h^o, $$
(60)

where \(\widehat{F}(\boldsymbol{Y})\) and \(\widehat{G}(\boldsymbol {Y})\) are the same as in the PQML case. So the estimate \(\hat{{h}}\) given by DIQML and PQML is different from the DML estimate (though the difference with PQML is only \({\mathcal{O}}_{p}(\frac{1}{M})\)). From (59), we see that the channel estimation performance depends on the matrix

$$ {\mathcal{W}}= \mathrm{E} \bigl\{ \bigl(\widehat{F}-\lambda^o \widehat{G} \bigr)h^o h^{o^H} \bigl(\widehat{F}- \lambda^o \widehat{G} \bigr)^H \bigr\} . $$
(61)

Recall that for both DIQML and PQML, \(\widehat{F}(\boldsymbol{Y}) = \frac{1}{M}{\mathcal{Y}}^{H} {\mathcal{R}}^{+}(h^{o}) {\mathcal{Y}}\), \(F^{o} = \frac{1}{M}{\mathcal{X}}^{H} {\mathcal{R}}^{+}(h^{o}) {\mathcal{X}}+\frac{\sigma_{v}^{2}}{M}{\mathcal{D}}(h^{o})\).

Performance of DIQML

For DIQML, \(\widehat{G}(\boldsymbol{Y}) = \frac{1}{M}{\mathcal{D}}(h^{o}) = G^{o}\), \(\lambda^{o} = \sigma_{v}^{2}\) and hence \(F^{o}-\lambda^{o} G^{o} = \frac{1}{M}{\mathcal{X}}^{H} {\mathcal{R}}^{+}(h^{o}){\mathcal{X}}\). We have

$$ {\mathcal{W}}^{\mathrm{{DIQML}}} = \frac{1}{M^2} \bigl[ {\sigma_v^2} {\mathcal{X}}^H {\mathcal{R}}^+ {\mathcal{X}}+ \sigma_v^4 {\mathcal{D}} \bigr], $$
(62)

which leads to (36).

Performance of PQML

Now \(\widehat{G}(\boldsymbol{Y}) = \frac{1}{M}{\mathcal{B}}^{H}(h^{o}){\mathcal{B}}(h^{o})\), \(G^{o}=\frac{\sigma_{v}^{2}}{M}{\mathcal{D}}(h^{o})\), λ o=1 and \(F^{o}-\lambda^{o} G^{o} = \frac{1}{M}{\mathcal{X}}^{H} {\mathcal{R}}^{+}(h^{o}){\mathcal{X}}\). We get

(63)

where \({\mathcal{D}}{'}\) is defined below (38). Note that \({\mathcal{D}}{'}h^{o} = {\mathcal{D}} h^{o}\) and for any h′, \(h{' H} {\mathcal{W}}^{\mathrm{{PQML}}}h^{o} = \frac{{\sigma_{v}^{2}}}{M^{2}} h{' H} {\mathcal{X}}^{H} {\mathcal{R}}^{+} {\mathcal{X}} h^{o} + \frac{\sigma_{v}^{4}}{M^{2}} \operatorname{tr} \{ {\mathcal{T}}^{H}(h{' \perp}) {\mathcal{R}}^{+} {\mathcal{T}}(h^{o \perp}) P_{{\mathcal{T}}(h^{o})} \} = 0 + 0 = 0\): \({\mathcal{W}}^{\mathrm{{PQML}}}\) has a null space spanned by h o. Now, for any h, h′, we have

(64)

or hence \({\mathcal{D}}{''}={\mathcal{D}}-{\mathcal{D}}{'}\), where \({\mathcal{D}}{''}\) is defined below (38) and we used the commutativity of convolution, leading to \({\mathcal{T}}(h^{\perp}){\mathcal{T}}(h^{o})={\mathcal{T}}(h^{o \perp }){\mathcal{T}}(h)\). Equations (37), (38) now follow. Note that the factor \([I - \frac{G^{o} h^{o} h^{o H}}{h^{o H} G^{o} h^{o}} ]\) in (59), which is due to Δλ, has asymptotically no effect on \(C^{\mathrm{{PQML}}}_{\Delta{h}\Delta{h}}\). So asymptotically \(C^{\mathrm{{PQML}}}_{\Delta{h}\Delta{h}} = C^{\mathrm{{DML}}}_{\Delta{h}\Delta{h}}\) [12]. In fact, for PQML, \(\Delta\lambda= {\mathcal{O}}_{p}(\frac{1}{{M}})\), whereas \((\widehat{F}- \lambda^{o} \widehat{G} )h^{o} = {\mathcal{O}}_{p}(\frac{1}{\sqrt{M}})\). Hence also, forcing λ=1 in PQML does not influence the performance asymptotically.

Recall that the various substitutions above of \(P_{{\mathcal{T}}^{H}(h^{\perp})}\) by \(P_{{\mathcal{T}}(h)}^{\perp}\) are correct for all versions of h with pm that include \(h^{\perp}_{\mathrm{bal},\min}\), or for \({\mathcal{T}}^{\perp}\), but for \(h^{\perp}_{\min}\) (p=m−1) constitute an approximation that becomes justifiable only asymptotically (in M).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Carvalho, E., Omar, SM. & Slock, D.T.M. Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems. Circuits Syst Signal Process 32, 683–709 (2013). https://doi.org/10.1007/s00034-012-9474-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9474-2

Keywords

Navigation