Skip to main content

Advertisement

Log in

Electronically Tunable Single-Input Five-Output Voltage-Mode Universal Filter Using VDTAs and Grounded Passive Elements

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a possible usage of the voltage differencing transconductance amplifier (VDTA) for the design of an electronically tunable single-input five-output voltage-mode universal filter. The presented filter is constructed using two VDTAs, two capacitors and two resistors that are all grounded. The circuit simultaneously realizes lowpass (LP), bandpass (BP), highpass (HP), bandstop (BS) and allpass (AP) filtering responses, without changing the circuit topology. The circuit is capable of providing an independent electronic control of the natural angular frequency (ω 0) and the quality factor (Q) through the transconductance gains of the VDTAs. By simply adjusting the transconductance ratio, a high-Q filter can also be obtained. Because of the high-input impedance of the circuit, it is advantageous for cascade connection. To support the theoretical analysis, the properties of the designed filter have been verified by PSPICE simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.T. Abuelma’Atti, H.A. Al-Zaher, New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integr. Circuits Signal Process. 16, 239–244 (1998)

    Article  Google Scholar 

  2. A.F. Arbel, L. Goldminz, Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process. 2, 243–255 (1992)

    Article  Google Scholar 

  3. D. Biolek, CDTA-Building block for current-mode analog signal processing, in Proceedings of the ECCTD’03, (2003), pp. 397–400

    Google Scholar 

  4. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  5. H.P. Chen, Universal voltage-mode filter using only plus-type DDCCs. Analog Integr. Circuits Signal Process. 50(2), 137–139 (2007)

    Article  Google Scholar 

  6. H.P. Chen, Voltage-mode FDCCII-based universal filters. AEÜ, Int. J. Electron. Commun. 62, 320–323 (2008)

    Article  Google Scholar 

  7. H.P. Chen, Versatile universal voltage-mode filter employing DDCCs. AEÜ, Int. J. Electron. Commun. 63(1), 78–82 (2009)

    Article  Google Scholar 

  8. H.P. Chen, S.S. Shen, A versatile universal capacitor-grounded voltage-mode filter using DVCCs. ETRI J. 29(4), 470–476 (2007)

    Article  MathSciNet  Google Scholar 

  9. W.Y. Chiu, J.W. Horng, Voltage-mode biquadratic filters with one input and five outputs using DDCCs. Indian J. Eng. Mater. Sci. 18, 97–101 (2011)

    Article  Google Scholar 

  10. W.Y. Chiu, J.W. Horng, S.T. Cheng, Universal filter with one input and five outputs using DDCCs, in Proceedings of 2008 Int. Sym. Intelligent Sig. Process. Commun. (ISPACS2008) (2008)

    Google Scholar 

  11. W.Y. Chiu, J.W. Horng, Y.S. Guo, C.Y. Tseng, DDCC based voltage-mode one input five outputs biquadratic filter with high-input impedance, in Proceedings of 13th Int. Sym. Integrated Circuits (ISIC-2011) (2011), pp. 39–42

    Chapter  Google Scholar 

  12. W.Y. Chiu, J.W. Horng, H. Lee, C.C. Huang, DVCC-based voltage-mode biquadratic filter with high-input impedance, in Proceedings of 2010 Fifth IEEE Int. Sym. Electron. Design, Test & Applications (2010), pp. 121–125

    Chapter  Google Scholar 

  13. W.Y. Chiu, J.W. Horng, S.S. Yang, High-input impedance voltage-mode universal biquadratic filter with one input and five outputs using DDCCs, in Proceedings of 4th IEEE Int. Sym. on Electron. Design, Test & Applications (2008), pp. 346–350

    Chapter  Google Scholar 

  14. S.S. Gupta, R. Senani, New voltage-mode/current-mode universal biquad filter using unity-gain cells. Int. J. Electron. 93(11), 769–775 (2006)

    Article  Google Scholar 

  15. J.W. Horng, Voltage-mode universal biquadratic filter with one input and five outputs using OTAs. Int. J. Electron. 89(9), 729–737 (2002)

    Article  Google Scholar 

  16. J.W. Horng, Lossless inductance simulation and voltage-mode universal biquadratic filter with one input and five outputs using DVCCs. Analog Integr. Circuits Signal Process. 62, 407–413 (2010)

    Article  Google Scholar 

  17. J.W. Horng, C.L. Hou, C.M. Chang, H.P. Chou, C.T. Lin, High input impedance voltage-mode universal biquadratic filter with one input and five outputs using current conveyors. Circuits Syst. Signal Process. 25(6), 767–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, Voltage-mode universal biquadratic filter with one input and five outputs. Analog Integr. Circuits Signal Process. 47, 73–83 (2006)

    Article  Google Scholar 

  19. J.W. Horng, C.L. Hou, C.M. Chang, W.Y. Chung, H.Y. Wei, Voltage-mode universal biquadratic filter with one input and five outputs using MOCCIIs. Comput. Electr. Eng. 31, 190–202 (2005)

    Article  MATH  Google Scholar 

  20. K. Kumar, K. Pal, Voltage-mode universal biquadratic filter using FTFN and OTA. J. Electr. Electron. Eng. 9(2), 1083–1087 (2009)

    Google Scholar 

  21. C.N. Lee, C.M. Chang, Single FDCCII-based mixed-mode biquad filter with eight outputs. AEÜ, Int. J. Electron. Commun. 63, 736–742 (2009)

    Article  Google Scholar 

  22. S. Minaei, E. Yuce, All-grounded passive elements voltage-mode DVCC-based universal filter. Circuits Syst. Signal Process. 29, 295–309 (2010)

    Article  MATH  Google Scholar 

  23. N. Pandey, S.K. Paul, Differential difference current conveyor transconductance amplifier: a new analog building block for signal processing. J. Electr. Comput. Eng. 2011, 361384 (2011). doi:10.1155/2011/361384

    MathSciNet  Google Scholar 

  24. R. Prokop, V. Musil, New modern circuit block CCTA and some its applications, in Proceedings of the 14th Int. Scientific and Applied Science Conf. Electronics (ET’2005) (2005), pp. 93–98

    Google Scholar 

  25. Z. Wang, 2-MOSFET transistor with extremely low distortion for output reaching supply voltages. Electron. Lett. 26, 951–952 (1990)

    Article  Google Scholar 

  26. A. Yesil, F. Kacar, H. Kuntman, New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3), 632–637 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions. This work was supported by the Office of the Higher Education Commission, Ministry of Education, Thailand, under the research project title “Higher Education Research Promotion”. The support from Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang (KMITL) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worapong Tangsrirat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satansup, J., Pukkalanun, T. & Tangsrirat, W. Electronically Tunable Single-Input Five-Output Voltage-Mode Universal Filter Using VDTAs and Grounded Passive Elements. Circuits Syst Signal Process 32, 945–957 (2013). https://doi.org/10.1007/s00034-012-9492-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9492-0

Keywords

Navigation