Skip to main content
Log in

Computation of Upper Bounds for the Solution of Continuous Algebraic Riccati Equations

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is considered with the computation of upper bounds for the solution of continuous algebraic Riccati equations (CARE). A parameterized upper bound for the solution of CARE is proposed by utilizing some linear algebraic techniques. Based on this bound, more precise estimation can be achieved by means of carefully choosing the bound’s parameters. Iterative algorithm is also developed to obtain more sharper solution bounds. Comparing with some existing results in the literature, the proposed bounds are less restrictive and more effective. The effectiveness and advantages of the proposed approach are illustrated via a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Basin, D. Calderon-Alvarez, Delay-dependent stability for vector nonlinear stochastic systems with multiple delays. Int. J. Innov. Comput. Inf. Control 7(4), 1565–1576 (2011)

    Google Scholar 

  2. H.H. Choi, T.Y. Kuc, Lower matrix bounds for the continuous algebraic Riccati and Lyapunov matrix equations. Automatica 38, 1147–1152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Davies, P. Shi, R. Wiltshire, New upper solution bounds for perturbed continuous algebraic Riccati equations applied to automatic control. Chaos Solitons Fractals 32, 487–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Davies, P. Shi, R. Wiltshire, New upper solution bounds of the discrete algebraic Riccati matrix equation. J. Comput. Appl. Math. 213, 307–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Davies, P. Shi, R. Wiltshire, New upper solution bounds for the continuous algebraic Riccati matrix equation. Int. J. Control. Autom. Syst. 6(5), 776–784 (2008)

    Google Scholar 

  6. R. Davies, P. Shi, R. Wiltshire, New lower solution bounds of the discrete algebraic Riccati matrix equation. Linear Algebra Appl. 427, 242–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.S. Gau, C.H. Lien, J.G. Hsieh, Novel stability conditions for interval delayed neural networks with multiple time-varying delays. Int. J. Innov. Comput. Inf. Control 7(1), 433–444 (2011)

    Google Scholar 

  8. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  9. J. Huang, Z. Han, X. Cai, L. Liu, Robust stabilization of linear differential inclusions with affine uncertainty. Circuits Syst. Signal Process. 30, 1369–1382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Komaroff, Upper summation and product bounds for solution eigenvalues of the Lyapunov matrix equation. IEEE Trans. Autom. Control 37, 1040–1042 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. W.H. Kwon, Y.S. Moon, S.C. Ahn, Bounds in algebraic Riccati and Lyapunov equations: a survey and some new results. Int. J. Control 64, 377–389 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.H. Lee, Eigenvalue upper and lower bounds of the solution for the continuous algebraic matrix Riccati equation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 34, 683–686 (1996)

    Google Scholar 

  13. C.H. Lee, New results for the bounds of the solutions for the continuous algebraic Riccati and Lyapunov equations. IEEE Trans. Autom. Control 42, 118–123 (1997)

    Article  MATH  Google Scholar 

  14. C.H. Lee, Simpler stabilizability criteria and memoryless state feedback control design for time-delay systems with time-varying perturbations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 45, 1121–1125 (1998)

    Article  Google Scholar 

  15. C.H. Lee, Solution bounds of the continuous Riccati matrix equation. IEEE Trans. Autom. Control 48, 1409–1414 (2003)

    Article  Google Scholar 

  16. C.H. Lee, Matrix bounds of the continuous and discrete Riccati equation: a unified approach. Int. J. Control 76, 635–642 (2003)

    Article  MATH  Google Scholar 

  17. C.H. Lee, New upper solution bounds of the continuous algebraic Riccati matrix equations. IEEE Trans. Autom. Control 51, 330–334 (2006)

    Article  Google Scholar 

  18. B. Liu, Y. Xia, M. Mahmoud, H. Wu, S. Cui, New predictive control scheme for networked control systems. Circuits Syst. Signal Process. 31, 945–960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.L. Liu, Robust stability for neutral time-varying delay systems with nonlinear perturbations. Int. J. Innov. Comput. Inf. Control 7(10), 5749–5760 (2011)

    Google Scholar 

  20. S. Savov, I. Popchev, New upper estimates for the solution of the continuous algebraic Lyapunov equation. IEEE Trans. Autom. Control 49, 1841–1842 (2004)

    Article  MathSciNet  Google Scholar 

  21. X. Su, P. Shi, L. Wu, Y.D. Song, A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. (2012). doi:10.1109/TFUZZ.2012.2196522

    Google Scholar 

  22. J.G. Sun, Perturbation theory for algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 19, 39–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.N. Vizireanu, S.V. Halunga, Single sine wave parameters estimation method based on four equally spaced samples. Int. J. Electron. 98(7), 941–948 (2011)

    Article  Google Scholar 

  24. D.N. Vizireanu, S.V. Halunga, Analytical formula for three points sinusoidal signals amplitude estimation errors. Int. J. Electron. 99(1), 149–151 (2012)

    Article  Google Scholar 

  25. S.S. Wang, T.P. Lin, Robust stability of uncertain time-delay systems. Int. J. Control 46, 963–976 (1987)

    Article  MATH  Google Scholar 

  26. L. Wu, X. Su, P. Shi, J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework. IEEE Trans. Fuzzy Syst. 19(2), 366–378 (2011)

    Article  Google Scholar 

  27. L. Wu, X. Su, P. Shi, J. Qiu, A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(1), 273–286 (2011)

    Article  Google Scholar 

  28. R. Yang, H. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(2), 467–474 (2009)

    Article  Google Scholar 

  29. H. Zhang, G. Feng, C. Dang, An approach to H control of a class of nonlinear stochastic systems. Circuits Syst. Signal Process. 31, 127–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Zhang, X. Cai, Z. Han, Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 234, 174–180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Zhang, H. Su, H. Wang, Z. Han, Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. Commun. Nonlinear Sci. Numer. Simul. 17, 4968–4977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Zhu, Z. Han, A note on observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 47, 1751–1754 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the anonymous reviewers for their helpful suggestions. This work is supported in part by the National Natural Science Foundation of China under Grant 61104140, the Natural Science Foundation of Shanghai under Grant 12ZR1412200, the Innovation Program of Shanghai Municipal Education Commission under Grant 12YZ156, the Excellent Young Teachers Program of Shanghai Higher Education under Grant shgcjs001, the Fundamental Research Funds for the Central Universities (HUST: Grant No. 2011JC055), the Research Fund for the Doctoral Program of Higher Education (RFDP) under Grant 20100142120023, and the Natural Science Foundation of Hubei Province of China under Grant 2011CDB042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Housheng Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Su, H. & Wang, J. Computation of Upper Bounds for the Solution of Continuous Algebraic Riccati Equations. Circuits Syst Signal Process 32, 1477–1488 (2013). https://doi.org/10.1007/s00034-012-9498-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9498-7

Keywords

Navigation