Skip to main content
Log in

Robust Passivity and Passification for a Class of Singularly Perturbed Nonlinear Systems with Time-Varying Delays and Polytopic Uncertainties via Neural Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of robust passivity and passification for a class of singularly perturbed nonlinear systems (SPNS) with time-varying delays and polytopic uncertainties via neural networks. By constructing a proper functional and the linear matrix inequalities (LMIs) technique, some novel sufficient conditions are derived to make SPNS passive. The allowable perturbation bound ξ can be determined via certain algebra inequalities, and the proposed controller based on neural network will make SPNS with polytopic uncertainties passive for all ξ∈(0,ξ ). Finally, a numerical example is given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. Abdaollahi, H.A. Talebi, R.V. Patel, A stable neural network-based observer with application to flexible-joint manipulators. IEEE Trans. Neural Netw. 17, 118–129 (2006)

    Article  Google Scholar 

  2. W. Assawinchaichote, S.K. Nguang, H fuzzy control design for nonlinear singularly perturbed systems with pole placement constraints: an LMI approach. IEEE Trans. Syst. Man Cybern. 34, 579–588 (2004)

    Article  Google Scholar 

  3. A. Bemporad, G. Bianchini, F. Brogi, Passivity analysis and passification of discrete-time hybrid systems. IEEE Trans. Autom. Control 53, 1004–1009 (2008)

    Article  MathSciNet  Google Scholar 

  4. Y.C. Chang, B.S. Chen, A nonlinear adaptive H tracking control design in robotic systems via neural networks. IEEE Trans. Control Syst. Technol. 5, 13–29 (1997)

    Article  Google Scholar 

  5. B.S. Chen, C.L. Lin, On the stability of singularly perturbed systems. IEEE Trans. Autom. Control 35, 1265–1270 (1990)

    Article  MATH  Google Scholar 

  6. S.J. Chen, J.L. Lin, Maximal stability bounds of singularly perturbed systems. J. Franklin Inst. 1209–1218 (1999)

  7. J.S. Chiou, F.C. Kung, T.H. Li, Robust stabilization of a class singularly perturbed discrete bilinear systems. IEEE Trans. Autom. Control 45, 1187–1191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Gao, T. Chen, T. Chai, Passivity and passification for networked control systems. SIAM J. Control Optim. 46, 1299–1322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Hayakawa, W.M. Haddad, N. Hovakimyan, Neural network adaptive control for a class of nonlinear systems. IEEE Trans. Neural Netw. 19, 80–89 (2008)

    Article  Google Scholar 

  10. J. Hu, Z.D. Wang, H.J. Gao, L.K. Stergioulas, Robust sliding mode control for discrete stochastic systems with mixed time-delays, randomly occurring uncertainties and randomly occurring nonlinearities. IEEE Trans. Ind. Electron. 59, 3008–3015 (2012)

    Article  Google Scholar 

  11. T.W. Huang, C.D. Li, S.K. Duan et al., Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learn. Syst. 23, 866–875 (2012)

    Article  Google Scholar 

  12. H. Kando, T. Iwazumi, Stabilizing feedback controllers for singularly perturbed systems. IEEE Trans. Syst. Man Cybern. SMC-14, 903–911 (1984)

    Article  MathSciNet  Google Scholar 

  13. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)

    MATH  Google Scholar 

  14. P.V. Kokotovic, H.K. Khalil, J.O. Reilly, Singular Perturbation Method in Control: Analysis and Design (Academic, Orlando, 1986)

    Google Scholar 

  15. C. Li, H. Zhang, X. Liao, Passivity and passification of fuzzy systems with time delays. Comput. Math. Appl. 52, 1067–1078 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.D. Li, G. Feng, Stabilizing effects of impulse in delayed BAM neural networks. IEEE Trans. Circuits Syst. II 55, 1284–1288 (2008)

    Article  Google Scholar 

  17. C.D. Li, G. Feng, T.W. Huang, On hybrid impulsive and switching neural networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38, 1549–1560 (2008)

    Article  Google Scholar 

  18. C.D. Li, S.C. Wu, G. Feng, X.F. Liao, Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans. Neural Netw. 22, 323–329 (2011)

    Article  Google Scholar 

  19. T.S. Li, K.J. Lin, Stabilization of singularly perturbed fuzzy systems. IEEE Trans. Fuzzy Syst. 12, 579–595 (2004)

    Article  Google Scholar 

  20. X. Li, X. Liao, Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. II, Express Briefs 52, 471–475 (2005)

    Article  Google Scholar 

  21. K.J. Lin, Composite observer-based feedback design for singularly perturbed systems via LMI approach, in Proc. SICE2010 (2010), pp. 3061–3065

    Google Scholar 

  22. K.J. Lin, Neural network based observer and adaptive control design for a class of singularly perturbed nonlinear systems, in Conf. ASCC2011 (2011), pp. 1176–1180

    Google Scholar 

  23. K.J. Lin, Stabilisation of singularly perturbed nonlinear system via neural network-based control and observer design. Int. J. Syst. Sci. (2012). doi:10.1080/00207721.2012.670304

    Google Scholar 

  24. K.J. Lin, T.S. Li, Stabilization of uncertain singularly perturbed systems with pole-placement constraints. IEEE Trans. Circuit Syst. II 53, 916–920 (2006)

    Article  Google Scholar 

  25. M.S. Mahmoud, A. Ismail, Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Marszalek, Z. Trzaska, Mixed-mode oscillations in a modified Chua’s circuit. Circuits Syst. Signal Process. 29, 1075–1087 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Mei, C.X. Cai, Y. Zou, A generalized KYP Lemma-based approach for H control of singularly perturbed systems. Circuits Syst. Signal Process. 28, 945–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. D.S. Naidu, Singular Perturbation Methodology in Control Systems (Peter Peregrinus, London, 1988)

    Book  MATH  Google Scholar 

  29. B. Shen, Z.D. Wang, X.H. Liu, A stochastic sampled-data approach to distributed H filtering in sensor networks. IEEE Trans. Circuits Syst. I 58, 2237–2246 (2011)

    Article  MathSciNet  Google Scholar 

  30. B. Shen, Z.D. Wang, H.S. Shu, G.L. Wei, On nonlinear H filtering for discrete-time stochastic systems with missing measurements. IEEE Trans. Autom. Control 53, 2170–2180 (2008)

    Article  MathSciNet  Google Scholar 

  31. F. Sun, Y. Hu, H. Liu, Stability analysis and robust controller design for uncertain discrete-time singularly perturbed systems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12, 849–865 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Y.Y. Yin, F. Liu, P. Shi, Finite-time gain-scheduled control on stochastic bioreactor systems with partially known transition jump rates. Circuits Syst. Signal Process. 30, 609–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.P. Wen, Z.G. Zeng, Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli. Neural Process. Lett. 35, 47–59 (2012)

    Article  Google Scholar 

  34. S.P. Wen, Z.G. Zeng, T.W. Huang, Adaptive synchronization of memristor-based Chua’s circuits. Phys. Lett. A 376, 2775–2780 (2012)

    Article  Google Scholar 

  35. S.P. Wen, Z.G. Zeng, T.W. Huang, Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing (2012). doi:10.1016/j.neucom.2012.06.014

    Google Scholar 

  36. S.P. Wen, Z.G. Zeng, T.W. Huang, Robust H output tracking control for fuzzy networked systems with stochastic sampling and multiplicative noises. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0513-0

    MathSciNet  Google Scholar 

  37. Z. Wu, J. Park, H. Su, J. Chu, New results on exponential passivity of neural networks with time-varying delays. Nonl. Anal. RWA 13, 1593–1599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Z. Wu, P. Shi, H. Su, J. Chu, Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays. IEEE Trans. Neural Netw. 22, 1566–1575 (2011)

    Article  Google Scholar 

  39. X.M. Yao, L.G. Wu, W.X. Zheng, C.H. Wang, Passivity analysis and passification of Markovian jump systems. Circuits Syst. Signal Process. 29, 709–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z.G. Zeng, T.W. Huang, W.X. Zheng, Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

    Article  Google Scholar 

  41. Z.G. Zeng, J. Wang, Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw. 22, 651–657 (2009)

    Article  Google Scholar 

  42. Z.G. Zeng, J. Wang, Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural networks. IEEE Trans. Syst. Man Cybern. B 38, 1525–1536 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Additional information

The work is supported by the Natural Science Foundation of China under Grants 60974021 and 61125303, the 973 Program of China under Grant 2011CB710606, the Fund for Distinguished Young Scholars of Hubei Province under Grant 2010CDA081, and National Priority Research Project NPRP 4-451-2-168, funded by Qatar National Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, S., Zeng, Z., Huang, T. et al. Robust Passivity and Passification for a Class of Singularly Perturbed Nonlinear Systems with Time-Varying Delays and Polytopic Uncertainties via Neural Networks. Circuits Syst Signal Process 32, 1113–1127 (2013). https://doi.org/10.1007/s00034-012-9509-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9509-8

Keywords

Navigation