Skip to main content
Log in

CFAR Detectors for MIMO Radars

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

CFAR (Constant False-Alarm Rate) processors are useful for detecting radar targets in a background for which the parameters in the statistical distribution are not known. A variety of CFAR techniques such as CA (Cell Averaging), Go (Greatest Of), SO (Smallest Of), OS (Ordered Statistics) and ACMLD (Automatic Censored Mean-Level Detector) processors have been proposed for SISO (Single Input–Single Output) radars in a non-homogeneous background. In this paper, conventional CFAR algorithms including CA, SO, OS and ACMLD processors are generalized for MIMO (Multiple Input–Multiple Output) radars. The exact expressions for false-alarm probabilities of the proposed algorithms in a homogeneous background are presented. In addition, the detection performance of the proposed detectors is studied by means of simulation in the presence of interfering targets and also colored Gaussian clutter. Besides, the proposed CFAR processors are compared, and it is shown that the ACML-based algorithm is superior to the other investigated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.K. Al-Hussaini, Performance of the ‘smaller of’ and ‘greater of’ detectors integrating M pulses. Proc. IEEE 76(6), 731–733 (1988)

    Article  Google Scholar 

  2. C.Y. Chong, F. Pascal, J.-P. Ovarlez, M. Lesturqie, MIMO radar detection in non-Gaussian and heterogeneous clutter. IEEE J. Sel. Top. Signal Process., MIMO Radar Appl. 4(1), 115–126 (2010)

    Article  Google Scholar 

  3. G. Cui, L. Kong, X. Yang, J. Yang, The Rao and Wald tests designed for distributed targets with polarization MIMO radar in compound-Gaussian clutter. Circuits Syst. Signal Process. 31(1), 237–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Fishler, A. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, R.A. Valenzuela, Spatial diversity in radars- models and detection performance. IEEE Trans. Signal Process. 54(3), 823–838 (2006)

    Article  Google Scholar 

  5. P.P. Gandhi, S.A. Kassam, Analysis of CFAR processors in nonhomogeneous background. IEEE Trans. Aerosp. Electron. Syst. 24(4), 427–445 (1988)

    Article  Google Scholar 

  6. A.L. Garcia, Probability, Statistics, and Random Processes for Electrical Engineering (Prentice Hall, New York, 2009)

    Google Scholar 

  7. J. Guan, Y. Huang, Y. He, A CFAR detector for MIMO array radar based on adaptive pulse compression-capon filter. Sci. China Inf. Sci. 54(11), 2411–2424 (2011)

    Article  MathSciNet  Google Scholar 

  8. A. Haimovich, R.S. Blum, L.J. Cimini, MIMO radar with widely separated antenna. IEEE Signal Process. Mag. 25(1), 116–129 (2008)

    Article  Google Scholar 

  9. V.G. Hansen, Constant false-alarm rate processing in search radars, in Proceeding of the IEEE 1973 International Radar Conference, London (1973), pp. 325–332

    Google Scholar 

  10. S.D. Himonas, M. Barkat, Automatic censored CFAR detection for nonhomogeneous environments. IEEE Trans. Aerosp. Electron. Syst. 28(1), 286–304 (1992)

    Article  Google Scholar 

  11. X. Hou, N. Morinaga, T. Namekawa, Direct evaluation of radar detection probabilities. IEEE Trans. Aerosp. Electron. Syst. 23(4), 418–423 (1987)

    Article  Google Scholar 

  12. N. Janatian, CFAR detection for MIMO radars. M.Sc. Dissertation, Department of Electrical Engineering, Isfahan University of Technology, Isfahan, Iran, 2010

  13. E. Kreyszig, Advanced Engineering Mathematics, 8th edn. (Wiley, New York, 2002)

    Google Scholar 

  14. J. Li, P. Stoica, MIMO Radar Signal Processing (Wiley, New Jersey, 2009)

    Google Scholar 

  15. J.D. Moore, N.B. Lawerence, Comparison of two CFAR methods used with square law detection of Swerling I targets, in Proceedings of the IEEE International Radar Conference, New York (1980), pp. 403–409

    Google Scholar 

  16. H. Rohling, Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 19(4), 608–621 (1983)

    Article  Google Scholar 

  17. P.F. Sammartino, C.J. Baker, H.D. Griffiths, Adaptive MIMO radar system in clutter, in Proceedings of IEEE Radar Conference, Boston, USA (2007), pp. 276–281

    Google Scholar 

  18. A. Sheikhi, A. Zamani, Temporal coherent adaptive target detection for multi-input multi-output radars in clutter. IET Proc. Radar Sonar Navig. 2(2), 86–96 (2008)

    Article  Google Scholar 

  19. G.V. Trunk, Range resolution of targets using automatic detectors. IEEE Trans. Aerosp. Electron. Syst. 14(5), 750–755 (1978)

    Article  Google Scholar 

  20. C. Xun, R. Blum, Non-coherent MIMO radar in a non-Gaussian noise-plus-clutter environment, in Proceedings of 44th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA (2010), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Janatian.

Appendices

Appendix 1

The False-alarm probability of a CFAR detector is determined by

$$ P_\mathrm{fa}=E_{Z} \bigl(P (x_{0}> \alpha z | z,H_{0} ) \bigr)=\int_{0}^{\infty }P (x_{0}>\alpha z | z,H_{0} )f_{Z} (z )\,dz $$
(58)

For CA-CFAR detector, x 0 and z are defined by summation of MN and LMN exponential RVs, respectively (Eqs. (13) and (14)) and have Gamma distribution:

(59)
(60)

So we have

(61)

Substituting (60) and (61) in (58) and calculating the definite integral leads to

$$ P_\mathrm{fa}^{\mathrm{CA}}=\sum_{i=0}^{\mathit{MN}-1} \left (\begin{array}{c} \mathit{LMN}+i-1\\ i \end{array} \right )\frac{\alpha^{i}}{(1+\alpha)^{\mathit{LMN}+i}} $$
(62)

Appendix 2

The false-alarm probability can be determined by [11]:

$$ P_\mathrm{fa}=- \sum_{i}\bigl( \mathrm{Res} \bigl(\omega^{-1}\varPhi_{x_{0}|H_{0}} (\omega ) \varPhi_{z} (-\alpha\omega ) \bigr),\omega_{i}\bigr) $$
(63)

where \(\varPhi_{x_{0}|H_{0}}\) and Φ z (−αω) are given in (34) and (36). \(\varPhi_{x_{0}|H_{0}}\) has a pole of order MN at \(\omega_{0}=-\frac{1}{\mu}\), and residue at a pole of order n is defined by [13]:

$$ \mathrm{Res}\bigl(f(\omega),\omega_{0}\bigr)=\frac{1}{(n-1)!} \lim_{\omega \rightarrow \omega _{0}}\frac{d^{n-1}}{d\omega^{n-1}}\bigl(f(\omega) (\omega- \omega_{0})^{n}\bigr) $$
(64)

So, we have

(65)

Let ω=μz in (65)

(66)

This expression can be simplified to

(67)

Appendix 3

According to (23), the false-alarm probability of M-ACMLD for fixed k 1,…,k MN can be determined by [11]:

$$ P_\mathrm{fa} (k_{1},\dots,k_\mathit{MN} )=- \sum_{i}\bigl(\mathrm{Res} \bigl( \omega^{-1}\varPhi_{x_{0}|H_{0}} (\omega )\varPhi_{z} (-T_{\mathrm{Det}k_{1},k_{2},\dots ,k_\mathit{MN}}\omega ) \bigr), \omega_{i}\bigr) $$
(68)

In M-ACMLD the noise level estimates in different nodes are independent, So Φ Z (.) of the total noise power is the product of the individual MGFs of z j s defined in (53):

$$ \varPhi_{Z}(-T_{\mathrm{Det}k_{1},k_{2},\dots ,k_\mathit{MN}}z)=\prod_{j=1}^{MN} \left (\begin{array}{c} L\\ k_{j} \end{array} \right )\prod_{m=1}^{k_{j}} \bigl(-T_{\mathrm{Det}k_{1},k_{2},\dots ,k_\mathit{MN}}\mu{z}+d_{m}(k_{j}) \bigr)^{-1} $$
(69)

where

$$ d_{m} (k_{j} )=\frac{L-m+1}{k_{j}-m+1} $$
(70)

\(\varPhi_{x_{0}|H_{0}}\) is also defined in (36) and has a pole of order MN at \(\omega_{0}=-\frac{1}{\mu}\). Using (64) and substituting (36) and (69) in (68) we have

(71)

Using, ω=μz, this can be simplified to

(72)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janatian, N., Modarres-Hashemi, M. & Sheikhi, A. CFAR Detectors for MIMO Radars. Circuits Syst Signal Process 32, 1389–1418 (2013). https://doi.org/10.1007/s00034-012-9518-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9518-7

Keywords

Navigation