Skip to main content

Advertisement

Log in

A Fast Adaptive Salt and Pepper Noise Reduction Method in Images

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an effective filtering method is proposed to remove impulse noise from images. In this two-stage method, detected noise-free pixels remain unchanged. Afterwards, a Gaussian filter with adaptive variances according to the image noise level is applied on the noisy pixels. Experimental results show that the proposed method outperforms recent impulse denoising methods in terms of PSNR, MAE, IEF, and SSIM. Moreover, the speed of the method is comparable with them, and it can be used effectively in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.S. Awad, H. Man, Similar neighbor criterion for impulse noise removal in images. AEÜ, Int. J. Electron. Commun. 64(10), 904–915 (2010)

    Article  Google Scholar 

  2. A. Bovik, Handbook of Image and Video Processing (Academic Press, New York, 2000)

    MATH  Google Scholar 

  3. P.-Y. Chen, C.-Y. Lien, An efficient edge-preserving algorithm for removal of Salt-and-Pepper noise. IEEE Signal Process. Lett. 15, 833–836 (2008)

    Article  Google Scholar 

  4. T. Chen, H.R. Wu, Adaptive impulse detection using center-weighted median filters. IEEE Signal Process. Lett. 8, 1–3 (2001)

    Article  Google Scholar 

  5. Y. Dong, S. Xu, A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14(3), 193–196 (2007)

    Article  Google Scholar 

  6. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification (Wiley, New York, 2001), Sect. 10, 1

    MATH  Google Scholar 

  7. S. Esakkirajan, T. Veerakumar, A.N. Subramanyam, C.H. PremChand, Removal of high density Salt and Pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process. Lett. 18(5), 287–290 (2011)

    Article  Google Scholar 

  8. R. Garnett, T. Huegerich, C. Chui, W. He, A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 14(11), 1747–1754 (2005)

    Article  Google Scholar 

  9. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd edn. (Prentice Hall, New York, 2002)

    Google Scholar 

  10. A. Hyvärinen, J. Hurri, P.O. Hoyer, Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, vol. 39 (Springer, New York, 2009)

    Book  Google Scholar 

  11. H. Ibrahim, N.S.P. Kong, T.F. Ng, Simple adaptive median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Consum. Electron. 54(4), 1920–1927 (2008)

    Article  Google Scholar 

  12. A. Kalaitzis, Image inpainting with Gaussian processes. Master of Science Thesis, School of Informatics, University of Edinburgh (2009)

  13. T. Lindeberg, Scale-Space Theory in Computer Vision (Springer, Berlin, 1994)

    Book  Google Scholar 

  14. P.-E. Ng, K.-K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. Image Process. 15(6), 1506–1516 (2006)

    Article  Google Scholar 

  15. N.I. Petrovic, V. Crnojevic, Universal impulse noise filter based on genetic programming. IEEE Trans. Image Process. 17(7), 1109–1120 (2008)

    Article  MathSciNet  Google Scholar 

  16. J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  17. Z.M. Ramadan, Efficient restoration method for images corrupted with impulse noise. Circuits Syst. Signal Process. 31(4), 1397–1406 (2012)

    Article  MathSciNet  Google Scholar 

  18. D.L. Ruderman, The statistics of natural images. Network Comput. Neural Syst. 5(4), 517–548 (1994)

    Article  MATH  Google Scholar 

  19. E.P. Simoncelli, B.A. Olshausen, Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1), 1193–1216 (2001)

    Article  Google Scholar 

  20. K.S. Srinivasan, D. Ebenezer, A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Article  Google Scholar 

  21. T. Sun, Y. Neuvo, Detail-preserving median based filters in image processing. Pattern Recognit. Lett. 15, 341–347 (1994)

    Article  Google Scholar 

  22. A. Torralba, A. Oliva, Statistics of natural image categories. Netw. Comput. Neural Syst. 14(3), 391–412 (2003)

    Article  Google Scholar 

  23. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simmoncelli, Image quality assessment: form error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. S. Zhang, M.A. Karim, A new impulse detector for switching median filters. IEEE Signal Process. Lett. 9(11), 360–363 (2002)

    Article  Google Scholar 

  25. X. Zhang, Y. Xiong, Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter. IEEE Signal Process. Lett. 16(4), 295–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive and helpful suggestions and comments, which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nasri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasri, M., Saryazdi, S. & Nezamabadi-pour, H. A Fast Adaptive Salt and Pepper Noise Reduction Method in Images. Circuits Syst Signal Process 32, 1839–1857 (2013). https://doi.org/10.1007/s00034-012-9546-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9546-3

Keywords

Navigation