Abstract
This paper introduces some generalized fundamentals for fractional-order RL β C α circuits as well as a gradient-based optimization technique in the frequency domain. One of the main advantages of the fractional-order design is that it increases the flexibility and degrees of freedom by means of the fractional parameters, which provide new fundamentals and can be used for better interpretation or best fit matching with experimental results. An analysis of the real and imaginary components, the magnitude and phase responses, and the sensitivity must be performed to obtain an optimal design. Also new fundamentals, which do not exist in conventional RLC circuits, are introduced. Using the gradient-based optimization technique with the extra degrees of freedom, several inverse problems in filter design are introduced. The concepts introduced in this paper have been verified by analytical, numerical, and PSpice simulations with different examples, showing a perfect matching.















Similar content being viewed by others
References
K. Biswas, S. Sen, P. Dutta, Modelling of a capacitive probe in a polarizable medium. Sens. Actuators Phys. 120(1), 115–122 (2005)
G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)^{1/n} by a regular Newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)
K. Diethelm, N.J. Ford, A.D. Freed, Y.Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6), 743–773 (2005)
T.C. Doehring, A.H. Freed, E.O. Carew, I. Vesely, Fractional order viscoelasticity of the aortic valve: an alternative to QLV. J. Biomech. Eng. 127(4), 700–708 (2005)
A.S. Elwakil, B. Maundy, Extracting the Cole-Cole impedance model parameters without direct impedance measurement. Electron. Lett. 46(20), 1367–1368 (2010)
M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 384–396 (2007)
N.J. Ford, A.C. Simpson, The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)
M.E. Fouda, A.G. Radwan, On the fractional-order memristor model. J. Fract. Calc. Appl. 4(1), 1–7 (2013)
T.C. Haba, G.L. Loum, J.T. Zoueu, G. Albart, Use of a component with fractional impedance in the realization of an analogical regulator of order ½. J. Appl. Sci. 8(1), 59–67 (2008)
T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33(2), 364–373 (2007)
T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos Solitons Fractals 24(2), 479–490 (2005)
I.S. Jesus, J.A. Machado, J.B. Cunha, M.F. Silva, Fractional order electrical impedance of fruits and vegetables, in Proceedings of the 25th IASTED International Conference on Modeling Identification and Control (2006), pp. 489–494
I.S. Jesus, J.A. Machado, Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56(1), 45–55 (2009)
B.T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)
B.T. Krishna, K.V.V.S. Reddy, Active and Passive Realization of Fractance Device of Order 1/2. Act. Passive Electron. Compon. 2008 (2008)
H. Li, M. Wu, X. Wang, Fractional-moment capital asset pricing model. Chaos Solitons Fractals 42(1), 412–421 (2009)
R.L. Magin, Fractional calculus in bioengineering. Begell House, Connecticut (2006)
R.L. Magin, Fractional calculus in bioengineering, part 3. Crit. Rev. Biomed. Eng. 32(3–4), 195–377 (2004)
R.L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control 14(9–10), 1431–1442 (2008)
R. Martin, J.J. Quintara, A. Ramos, L. Nuez, Modeling electrochemical double layer capacitor, from classical to fractional impedance, in Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference (2008), pp. 61–66
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neuron systems. Comput. Math. Appl. 64(10), 3329–3339 (2012)
M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E75-A(12), 1814–1819 (1992)
K.B. Oldham, J. Spanier, Fractional Calculus (Academic Press, New York, 1974)
I. Petras, D. Sierociuk, I. Podlubny, Identification of parameters of a half-order system. IEEE Trans. Signal Process. 60(10), 5561–5566 (2012)
I. Petras, Y. Chen, Fractional-order circuit elements with memory, in Proceedings of the 13th International Carpathian Control Conference (2012), pp. 552–558
I. Petras, Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation (Springer, Berlin, 2011)
A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits. Syst., I 55(7), 2051–2063 (2008)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, Fractional-order sinusoidal oscillators: four practical circuit design examples. Int. J. Circuit Theory Appl. 36(4), 473–492 (2008)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, First order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(1), 55–66 (2008)
A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)
A.G. Radwan, K.N. Salama, Fractional-order RC and RL circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)
A.G. Radwan, K.N. Salama, Passive and active elements using fractional L β C α circuit. IEEE Trans. Circuits Syst. I 58(10), 2388–2397 (2011)
A.G. Radwan, Stability analysis of the fractional-order RL β C α circuit. J. Fract. Calc. Appl. 3(1), 1–15 (2012)
A.G. Radwan, M.H. Bakr, N.K. Nikolova, Transient adjoint sensitivities for discontinuities with Gaussian material distributions. Prog. Electromagn. Res. B 27, 1–19 (2011)
S. Roy, On the realization of a constant-argument immitance or fractional operator. IEEE Trans. Circuit Theory 14(3), 264–274 (1967)
J. Sabatier, O.P. Agrawal, M.J.A. Tenreiro, Advances in Fractional Calculus; Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)
K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76(2), 205–209 (1993)
I. Schäfer, K. Krüger, Modelling of lossy coils using fractional derivatives. J. Phys. D, Appl. Phys. 41(4), 045001 (2008)
A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order filter with two fractional elements of dependent orders. J. Microelectron. 7(9), 965–969 (2012)
M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82(8), 1627–1634 (1999)
J. Valsa, Fractional-order electrical components, networks and systems, in Proceedings of the 22nd International Conference Radioelektronika (2012), pp. 1–9
S. Westerlund, L. Ekstam, Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Radwan, A.G., Fouda, M.E. Optimization of Fractional-Order RLC Filters. Circuits Syst Signal Process 32, 2097–2118 (2013). https://doi.org/10.1007/s00034-013-9580-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-013-9580-9