Skip to main content
Log in

An Adaptive Non-local Total Variation Blind Deconvolution Employing Split Bregman Iteration

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Total variation (TV) has been used as a popular and effective image prior model in regularization-based image restoration, because of its ability to preserve edges. However, as the total variation model favors a piecewise constant solution, the processing results in the flat regions of the image are poor, and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the model is based on derivation which only considers the local feature of the image. In this paper, we first propose an adaptive non-local total variation image blind restoration algorithm for deblurring a single image via a non-local total variation operator, which exploits the correlation in the image, and then an extended split Bregman iteration is proposed to address the joint minimization problem. Second, the maximum average absolute difference (MAAD) method is employed to estimate the blur support and initialize the blur kernel. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.R. Ayers, J.C. Dainty, Iterative blind deconvolution method and its applications. Opt. Lett. 13, 547–549 (1988)

    Article  Google Scholar 

  2. A. Buades, B. Coll, J.M. Morel, A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.F. Cai, H. Ji, C.Q. Liu, Z.W. Shen, Blind motion deblurring from a single image using sparse approximation, in Computer Vision and Pattern Recognition (2009), pp. 104–111

    Google Scholar 

  4. J.F. Cai, S. Osher, Z. Shen, Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2, 226–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Chan, C. Wong, Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  6. D.Q. Chen, L.Z. Cheng, Alternative minimisation algorithm for non-local total variational image deblurring. IEEE Trans. Image Process. 4, 353–364 (2010)

    Article  MathSciNet  Google Scholar 

  7. S. Durand, M. Nikolova, Denoising of frame coefficients using 1 data-fidelity term and edge preserving regularization. Multiscale Model. Simul. 6, 547–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. H.J. Gao, Z.Y. Zuo, An adaptive non-local total variation blind deconvolution employing split Bregman iteration, in The Fifth International Symposium on Computational Intelligence and Design, (2012)

    Google Scholar 

  9. G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Gilboa, J. Darbon, S. Osher, T. Chan, Nonlocal Convex Functionals for Image Regularization. UCLA C.A.M. Report, 06-57 (2006)

  11. T. Goldstein, S. Osher, The split Bregman algorithm for 1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Gonzalez, R.E. Woods, Digital Image Processing (Prentice-Hall, Englewood Cliffs, 2002)

    Google Scholar 

  13. E.T. Hale, W. Yin, Y. Zhang, Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. H.Y. Hong, L.C. Li, I.K. Park, T.X. Zhang, Universal deblurring method for real images using transition region. Opt. Eng. (2012)

  15. M.Y. Jung, L. Vese, Image restoration via nonlocal Mumford-Shah regularizers. UCLA C.A.M. Report, 09-09 (2009)

  16. S. Kindermann, S. Osher, P.W. Jones, Deblurring and denoising of images by nonlocal functional. Multiscale Model. Simul. 4, 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Li, K.H. Yap, Efficient discrete spatial techniques for blur support identification in blind image deconvolution. IEEE Trans. Signal Process. 54, 1557–1562 (2006)

    Article  Google Scholar 

  18. W.H. Li, Q.L. Li, W.G. Gong, S. Tang, Total variation blind deconvolution employing split Bregman iteration. J. Vis. Commun. Image Represent. 23, 409–417 (2012)

    Article  Google Scholar 

  19. A.C. Likas, N.P. Galatsanos, A variational approach for Bayesian blind image deconvolution. IEEE Trans. Image Process. 52, 2222–2233 (2004)

    Article  MathSciNet  Google Scholar 

  20. Y.F. Lou, X.Q. Zhang, S. Osher, A. Bertozzi, Image recovery via nonlocal operators. J. Sci. Comput. 42, 185–197 (2009)

    Article  MathSciNet  Google Scholar 

  21. V.Z. Mesarovie, N.P. Galatsanos, A.K. Katsaggelos, Regularized constrained total least squares image restoration. IEEE Trans. Image Process. 4(8), 1096–1108 (1995)

    Article  Google Scholar 

  22. R. Molina, J. Mateos, A.K. Katsaggelos, Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Trans. Image Process. 15, 3715–3727 (2006)

    Article  MathSciNet  Google Scholar 

  23. S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, Berlin, 2003)

    MATH  Google Scholar 

  24. G. Panci, P. Campisi, S. Colonnese, G. Scarano, Multichannel blind image deconvolution using the Bussgang algorithm: spatial and multiresolution approaches. IEEE Trans. Image Process. 12, 1324–1337 (2003)

    Article  MathSciNet  Google Scholar 

  25. L. Rudin, S. Osher, Total variation based image restoration with free local constraints, in Proc. First IEEE ICIP, Austin, USA (1994), pp. 31–35

    Chapter  Google Scholar 

  26. W. Souidene, K.A. Meraim, A. Beghdadi, A new look to multichannel blind image deconvolution. IEEE Trans. Image Process. 18, 1487–1500 (2009)

    Article  MathSciNet  Google Scholar 

  27. F. Sroubek, J. Flusser, Multichannel blind deconvolution of spatially misaligned images. IEEE Trans. Image Process. 14, 874–883 (2005)

    Article  MathSciNet  Google Scholar 

  28. A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems (Wiley, New York, 1977)

    Google Scholar 

  29. Z. Wang, A. Bovik, H. Sheikh, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  30. Z. Wang, A. Bovik, Mean squared error: love it or leave it?—A new look at signal fidelity measures. IEEE Signal Process. Mag. 26, 98–117 (2009)

    Article  Google Scholar 

  31. L.X. Yan, H.Z. Fang, S. Zhong, Blind image deconvolution with spatially adaptive total variation regularization. Opt. Lett. 37, 2778–2780 (2012)

    Article  Google Scholar 

  32. L.X. Yan, M.Z. Jin, H.Z. Fang, H. Liu, T.X. Zhang, Atmospheric-turbulence-degraded astronomical image restoration by minimizing second-order central moment. IEEE Geosci. Remote Sens. Lett. 9, 672–676 (2012)

    Article  Google Scholar 

  33. L.P. Yaroslavsky, Digital Picture Processing—An Introduction (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  34. Y. You, M. Kaveh, A regularization approach to joint blur identification and image restoration. IEEE Trans. Image Process. 5, 416–428 (1996)

    Article  Google Scholar 

  35. Q.Q. Yuan, L.P. Zhang, H.F. Shen, Multi-frame super-resolution employing a spatially weighted total variation model. IEEE Trans. Circuits Syst. Video Technol. 22, 379–392 (2012)

    Article  Google Scholar 

  36. X. Zhang, M. Burger, X. Bresson, S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.L. Zhang, Q.H. Zhang, G.M. He, Blind deconvolution of a noisy degraded image. Appl. Opt. 48, 2350–2355 (2009)

    Article  Google Scholar 

  38. L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  39. Y.V. Zhulina, Multiframe blind deconvolution of heavily blurred astronomical images. Appl. Opt. 45, 7342–7352 (2006)

    Article  Google Scholar 

  40. Online. http://code.google.com/p/dualdeblur/source/browse/trunk/dualdeblur/l2ImageFFT.m?r=81

  41. Online. http://www.cmnh.org/site/AtTheMuseum/PlanetariumandObservatory/AstronomyLectures.aspx

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their valuable suggestions. We would also like to thank Professors Rafael Molina, Xiaoqun Zhang, Jianfeng Cai, and Daiqiang Chen for supplying the Matlab implementation of their algorithm. This work was supported by the Project of the key National Natural Science Foundation of China under Grant No. 60736010, No. 60902060, the Innovation Research Fund Committee of HUST (2011QN073), and the Innovation Fund of CASC (CASC 201104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, Z., Zhang, T., Lan, X. et al. An Adaptive Non-local Total Variation Blind Deconvolution Employing Split Bregman Iteration. Circuits Syst Signal Process 32, 2407–2421 (2013). https://doi.org/10.1007/s00034-013-9581-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9581-8

Keywords

Navigation