Skip to main content
Log in

Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nowadays the necessity of having low-voltage operation and low-power consumption is essential for electronic devices, particularly for portable electronics. Therefore, this paper presents a new ultra-low-voltage CMOS topology for a differential difference current conveyor (DDCC) based on the bulk-driven (BD) principle. Due to the use of the BD technique, the proposed circuit is capable of working with a low supply voltage of ±0.3 V and consumes about 18.6 μW with a wide input common-mode range. The proposed BD-DDCC is suitable for ultra-low-voltage low-power applications. As application examples, a voltage-mode multifunction biquadratic filter based on two BD-DDCCs and four grounded passive elements, and a fourth-order band-pass filter are presented. All passive elements of both applications are grounded, which is advantageous for monolithic integration. Also, the input voltage signals are applied directly to the high input impedance terminals, which is a desirable feature for voltage-mode operation. The simulations were performed with PSPICE using the TSMC 0.18 μm n-well CMOS technology to prove the functionality and attractive results of the proposed circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.M. Carrillo, G. Torelli, R. Pérez-Aloe, F. Duque-Carrillo, 1-V rail-to-rail bulk-driven CMOS OTA with enhanced gain and gain-bandwidth product, in Proc. ECCTD (2005), pp. 261–264

    Google Scholar 

  2. J.M. Carrillo, G. Torelli, R. Pérez-Aloe, J.M. Valverde, J.F. Duque-Carrillo, Single-pair bulk-driven CMOS input stage: a compact low-voltage analog cell for scaled technologies. Integration VLSI J. 43, 251–257 (2010)

    Article  Google Scholar 

  3. H.P. Chen, Universal voltage-mode filter using only plus-type DDCCs. Analog Integr. Circuits Signal Process. 50, 137–139 (2007)

    Article  Google Scholar 

  4. H.P. Chen, K.H. Wu, Single DDCC-based voltage-mode multifunction filter. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90-A, 2029–2031 (2007)

    Article  Google Scholar 

  5. H.P. Chen, Versatile universal voltage-mode filter employing DDCCs. AEÜ, Int. J. Electron. Commun. 63, 78–82 (2009)

    Article  Google Scholar 

  6. W.Y. Chiu, J.W. Horng, High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans. Circuits Syst. II, Express Briefs 54, 649–652 (2007)

    Article  Google Scholar 

  7. W.-Y. Chiu, J.-W. Horng, Voltage-mode highpass, bandpass, lowpass and notch biquadratic filters using single DDCC. Radioengineering 21, 297–303 (2012)

    Google Scholar 

  8. W. Chiu, S.I. Liu, H.W. Tsao, J.J. Chen, CMOS differential difference current conveyors and their applications. IEE Proc., Circuits Devices Syst. 143, 91–96 (1996)

    Article  MATH  Google Scholar 

  9. L.H. Ferreira, An ultra low-voltage ultra low power rail-to-rail CMOS OTA Miller, in Proc. 2004 IEEE Asia–Pacific Conference on Circuits and Systems (2004), pp. 953–956

    Google Scholar 

  10. A. Guzinski, M. Bialko, J.C. Matheau, Body-driven differential amplifier for application in continuous-time active C-filter, in Proc. ECCD, Paris, France (1987), pp. 315–319

    Google Scholar 

  11. Y. Haga, I. Kale, Bulk-driven flipped voltage follower, in Proc. IEEE ISCAS (2009), pp. 2717–2720

    Google Scholar 

  12. J.-W. Horng, High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs. Circuits Syst. Signal Process. 27, 553–562 (2008)

    Article  MATH  Google Scholar 

  13. M.A. Ibrahim, H. Kuntman, O. Cicekoglu, Single DDCC biquads with high input impedance and minimum number of passive elements. Analog Integr. Circuits Signal Process. 43, 71–79 (2005)

    Article  Google Scholar 

  14. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30, 1071–1089 (2011)

    Article  Google Scholar 

  15. F. Khateb, N. Khatib, J. Koton, Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectron. J. 42, 1010–1017 (2011)

    Article  Google Scholar 

  16. F. Khateb, N. Khatib, D. Kubánek, Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectron. J. 42, 622–631 (2011)

    Article  Google Scholar 

  17. F. Khateb, N. Khatib, D. Kubánek, Novel ultra-low-power class AB CCII+ based on floating-gate folded cascode OTA. Circuits Syst. Signal Process. 31, 447–464 (2012)

    Article  Google Scholar 

  18. F. Khateb, N. Khatib, D. Kubánek, Low-voltage ultra-low-power current conveyor based on quasi-floating gate transistors. Radioengineering 21, 725–735 (2012)

    Google Scholar 

  19. F. Khateb, F. Kacar, N. Khatib, D. Kubánek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013)

    Article  Google Scholar 

  20. P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40, 1212–1224 (2005)

    Article  Google Scholar 

  21. W.-T. Lee, Y.-Z. Liao, New voltage-mode high-pass, band-pass and low-pass filter using DDCC and OTAs. AEÜ, Int. J. Electron. Commun. 62, 701–704 (2008)

    Article  Google Scholar 

  22. I. Navarro, A.J. López-Martín, C.A. de la Cruz, A. Carlosena, A compact four-quadrant floating-gate MOS multiplier. Analog Integr. Circuits Signal Process. 41, 159–166 (2004)

    Article  Google Scholar 

  23. S.-W. Pan, C.-C. Chuang, C.-H. Yang, Y.-S. Lai, A novel OTA with dual bulk-driven input stage, in Proc. ISCAS 2009 (2009), pp. 2721–2724

    Google Scholar 

  24. P. Prommee, M. Somdunyakanok, CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEÜ, Int. J. Electron. Commun. 65, 1–8 (2011)

    Article  Google Scholar 

  25. G. Raikos, S. Vlassis, C. Psychalinos, 0.5 V bulk-driven analog building blocks. AEÜ, Int. J. Electron. Commun. 66, 920–927 (2012)

    Article  Google Scholar 

  26. G. Raikos, S. Vlassis, 0.8V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63, 425–432 (2010)

    Article  Google Scholar 

  27. S.S. Rajput, S.S. Jamuar, Low voltage analog circuit design techniques. IEEE Circuits Syst. Mag. 2, 24–42 (2002)

    Article  Google Scholar 

  28. F. Rezaei, S.J. Azhari, Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectron. J. 42, 827–836 (2011)

    Article  Google Scholar 

  29. E. Rodriguez-Villegas, Low power and low voltage circuit design with the FGMOS transistor (2006). ISBN: 978-0-86341-617-0

  30. J. Rosenfeld, M. Kozak, E.G. Friedman, A bulk-driven CMOS OTA with 68 dB DC gain, in Proc. ICECS 2004 (2004), pp. 5–8

    Google Scholar 

  31. S. Vlassis, G. Raikos, Bulk-driven differential voltage follower. Electron. Lett. 45, 1276–1277 (2009)

    Article  Google Scholar 

  32. S. Yan, E. Sanchez-Sinencio, Low-voltage analog circuit design techniques, a tutorial. IEICE Trans. Analog Integr. Circuits Syst. 00-A, 179–196 (2000)

    Google Scholar 

  33. L. Yin, S.H.K. Embabi, E. Sánchez-Sinencio, A floating-gate MOSFET D/A converter, in Proceedings of the IEEE International Symposium on Circuits and Systems (1997), pp. 409–412

    Google Scholar 

  34. H.-J. Yoo, C.V. Hoof, Bio-Medical CMOS ICs, 2011, 526, ISBN: 978-1-4419-6596-7 (Print) 978-1-4419-6597-4 (Online)

  35. http://www.mosis.com/pages/Technical/Testdata/tsmc-018-prm

Download references

Acknowledgements

This research was performed in laboratories supported by the SIX project, registration number CZ.1.05/2.1.00/03.0072, and was supported by the operational program Research and Development for Innovation, Czech Science Foundation project No. GA102/11/1379, and also by the Ministry of Industry and Commerce under contract FR-TI3/485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khateb, F., Kumngern, M., Spyridon, V. et al. Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications. Circuits Syst Signal Process 33, 159–176 (2014). https://doi.org/10.1007/s00034-013-9619-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9619-y

Keywords

Navigation