Skip to main content
Log in

Robust Nonlinear H State Feedback Control of Polynomial Discrete-Time Systems: An Integrator Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of designing a nonlinear H state feedback controller for polynomial discrete-time systems with norm-bounded uncertainties. In general, the problem of designing a controller for polynomial discrete-time systems is difficult, because it is a nonconvex problem. More precisely, in general, its Lyapunov function and control input are not jointly convex. Hence, it cannot be solved by semidefinite programming. In this paper, a novel approach is proposed, where an integrator is incorporated into the controller structure. In doing so, a convex formulation of the controller design problem can be rendered in a less conservative way than the available approaches. Furthermore, we establish the interconnection between robust H control of polynomial discrete-time systems with norm-bounded uncertainties and H control of scaled polynomial discrete-time systems. This establishment allows us to convert the robust H control problems to H control problems. Then, based on the sum of squares (SOS) approach, sufficient conditions for the existence of a nonlinear H state feedback controller are given in terms of solvability of polynomial matrix inequalities (PMIs), which can be solved by the recently developed SOS solvers. A tunnel diode circuit is used to demonstrate the validity of this integrator approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.A. Ball, J.W. Helton, H control for nonlinear plants: connection with differential games, in Proc. 28th IEEE Conf. Decision Control (1989), pp. 956–962

    Chapter  Google Scholar 

  2. B.R. Barmish, Stabilization of uncertain systems via linear control. IEEE Trans. Autom. Control 28(8), 848–850 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Basar, G.J. Olsder, Dynamic Noncooperative Game Theory (Academic Press, New York, 1982)

    MATH  Google Scholar 

  4. T. Basar, Optimum performance levels for minimax filters, predictors and smoothers. Syst. Control Lett. 16, 309–317 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. A.C. De Castro, C.S. Araujo, J.M. Araujo, E.T.F. Santos, F.A. Moreire, Robust H control with selection of sites for application of decentralized controllers in power systems. Int. J. Innov. Comput. Inf. Control 9(1), 139–152 (2013)

    Google Scholar 

  6. M.C. De Oliveira, J. Bernussou, J.C. Geromel, A new discrete-time robust stability condition. Syst. Control Lett. 37(4), 261–265 (1999)

    Article  MATH  Google Scholar 

  7. D. Henrion, J.B. Lasserre, J. Löfberg, GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4), 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. D.J. Hill, P.J. Moylan, Dissipative dynamical systems: basic input–output and state properties. J. Franklin Inst. 309, 327–357 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. W.H. Ho, S.H. Chen, J.H. Chou, Observability robustness of uncertain fuzzy-model-based control systems. Int. J. Innov. Comput. Inf. Control 9(2), 805–819 (2013)

    Google Scholar 

  10. A. Isidori, A. Astolfi, Disturbance attenuation and H control via measurement feedback in nonlinear systems. IEEE Trans. Autom. Control 37, 1283–1293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Isidori, Feedback control of nonlinear systems, in Proc. 1st European Control Conf. (1991), pp. 1001–1012

    Google Scholar 

  12. H.K. Khalil, Nonlinear Systems (Prentice-Hall, Englewood Cliffs, 1996)

    Google Scholar 

  13. M. Krug, S. Saat, S.K. Nguang, Nonlinear robust H static output feedback controller design for parameter dependent polynomial systems: an iterative sums of squares approach, in Proceedings of 50th Conference on Decision and Control and European Control Conference (CDC-EEC) (2011)

    Google Scholar 

  14. J. Lofberg, YALMIP: a toolbox for modeling and optimization in Matlab, in IEEE International Symposium on Computer Aided Control Systems Design (2004), pp. 284–289

    Google Scholar 

  15. H.J. Ma, G.H. Yang, Fault tolerant H control for a class of nonlinear discrete-time systems: using sum of squares optimization, in American Control Conference (2008), pp. 1588–1593

    Google Scholar 

  16. S.K. Nguang, Robust nonlinear H output feedback control. IEEE Trans. Autom. Control 4(7), 1003–1007 (1996)

    Article  MathSciNet  Google Scholar 

  17. S.K. Nguang, W. Assawinchaichote, Filtering for fuzzy dynamical systems with D-stability constraints. IEEE Trans. Circuits Syst. I, Regul. Pap. 50(11), 1503–1508 (2003)

    Article  MathSciNet  Google Scholar 

  18. P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2000)

  19. S. Prajna, A. Papachristodoulou, F. Wu, Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach, in Proceedings of Asian Contr. Conf. (2004), pp. 157–165

    Google Scholar 

  20. S. Prajna, A. Papachristodoulou, P.A. Parrilo, Introducing SOSTOOLS: a general purpose sum of squares programming solver, in Conference on Decision and Control, vol. 1 (2002), pp. 741–746

    Google Scholar 

  21. E. Prempain, An application of the sum of squares decomposition to the L2-gain computation for a class of nonlinear systems, in Proceedings of IEEE Conf. (2005), pp. 6865–6868

    Google Scholar 

  22. S. Saat, M. Krug, S.K. Nguang, Nonlinear H static output feedback controller design for polynomial systems: an iterative sums of squares approach, in 6th IEEE Conference on Industrial Electronics and Applications (ICIEA) (2011), pp. 985–990

    Google Scholar 

  23. S. Saat, D. Huang, S.K. Nguang, Robust state feedback control of uncertain polynomial discrete-time systems: an integral action approach. Int. J. Innov. Comput. Inf. Control 9(3), 1233–1244 (2013)

    Google Scholar 

  24. S. Saat, S.K. Nguang, J. Wu, G. Zeng, Disturbance attenuation for a class of polynomial discrete-time systems: an integrator approach, in Proceedings of 12th International Conference on Control, Automation, Robotics and Vision (ICARCV) (2012), pp. 787–792

    Google Scholar 

  25. S. Saat, D. Huang, S.K. Nguang, A.H. Hamidon, Nonlinear state feedback control for a class of polynomial nonlinear discrete-time systems with norm-bounded uncertainties: an integrator approach. J. Franklin Inst. 350(7), 1739–1752 (2013)

    Article  MathSciNet  Google Scholar 

  26. X. Su, P. Shi, L. Wu, Y.D. Song, A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2013)

    Article  Google Scholar 

  27. X. Su, P. Shi, L. Wu, Y.D. Song, A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 20(6), 1114–1129 (2012)

    Article  Google Scholar 

  28. A.J. Van der Schaft, L 2-gain analysis of nonlinear systems and nonlinear state feedback H control. IEEE Trans. Autom. Control 37, 770–784 (1992)

    Article  MATH  Google Scholar 

  29. A.J. Van der Schaft, A state-space approach to nonlinear H control. Syst. Control Lett. 16, 1–8 (1991)

    Article  MATH  Google Scholar 

  30. J.C. Willems, Dissipative dynamical systems, Part I: General theory. Arch. Ration. Mech. Anal. 45, 321–351 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Wu, D.W.C. Ho, Sliding mode control of singular stochastic hybrid systems. Automatica 46(4), 779–783 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Wu, W.X. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Xu, L.H. Xie, Y.Y. Wang, Simultaneous stabilization and robust control of polynomial nonlinear systems using SOS techniques. IEEE Trans. Autom. Control 54(8), 1892–1897 (2009)

    Article  MathSciNet  Google Scholar 

  34. Q. Zheng, F. Wu, Nonlinear output feedback H control for polynomial nonlinear systems, in Proceedings of American Contr. Conf. (2008), pp. 1196–1201

    Google Scholar 

  35. D. Zhao, J. Wang, An improved H synthesis for parameter-dependent polynomial nonlinear systems using SOS programming, in American Control Conference (2009), pp. 796–801

    Google Scholar 

  36. D. Zhao, J. Wang, Robust static output feedback design for polynomial nonlinear systems. Int. J. Robust Nonlinear Control 20(14), 1637–1654 (2010)

    Article  MATH  Google Scholar 

  37. K. Zhou, P.P. Khargonekar, An algebraic Riccati equation approach to H optimization. Syst. Control Lett. 11(2), 85–91 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Mr. Faiz Rasool, Mr. Mathias Krug, and Mr. Leo for an outstanding discussion regarding this topic. This project has been supported by University Grant (PJP/2013/FKEKK(10A)/S01177 of Universiti Teknikal Malaysia Melaka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakir Saat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saat, S., Nguang, S.K., Lin, CM. et al. Robust Nonlinear H State Feedback Control of Polynomial Discrete-Time Systems: An Integrator Approach. Circuits Syst Signal Process 33, 331–346 (2014). https://doi.org/10.1007/s00034-013-9645-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9645-9

Keywords

Navigation