Skip to main content
Log in

CORDIC-Based Unified Architectures for Computation of DCT/IDCT/DST/IDST

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, CORDIC (coordinate rotation digital computer)-based Cooley-Tukey fast Fourier transform (FFT)-like algorithms for power-of-two point discrete cosine transform/discrete sine transform/inverse discrete cosine transform/inverse discrete sine transform are proposed and their corresponding unified architectures are developed by fully reusing the unique two basic processing elements. The proposed algorithms have some distinguished advantages, such as FFT-like regular data flow, unique post-scaling factor, and arithmetic-sequence rotation angles. The developed unified architectures can compute four different transforms by simple routing the data flow according to the specific transform without feeding different transform coefficients or different transform kernels. The unfolding technique is used to overcome the problem of difficult to realize pipeline that occur in iterative CORDIC algorithms. Compared to existing unified architectures, the proposed architectures have a superior performance in terms of hardware complexity, control complexity, throughput, scalability, modularity, and pipelinability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. C-23, 90–94 (1974)

    Article  MathSciNet  Google Scholar 

  2. C.H. Chen, B.D. Liu, J.F. Yang, Direct recursive structures for computing radix-q two-dimensional DCT/IDCT/DST/IDST. IEEE Trans. Circuits Syst. I 51(10), 2017–2030 (2004)

    Article  MathSciNet  Google Scholar 

  3. Y.H. Chen, T.Y. Chang, C.Y. Li, High throughput DA-based DCT with high accuracy error-compensated adder tree. IEEE Trans. Very Large Scale Integr. Syst. 19(4), 709–714 (2011)

    Article  Google Scholar 

  4. C. Cheng, K.K. Parhi, Hardware efficient fast DCT based on novel cyclic convolution structures. IEEE Trans. Signal Process. 54(11), 4419–4434 (2006)

    Article  Google Scholar 

  5. D.F. Chiper, M.N.S. Swamy, M.O. Ahmad, T. Stouraitis, Systolic algorithms and a memory-based design approach for a unified architecture for the computation of DCT/DST/IDCT/IDST. IEEE Trans. Circuits Syst. I 52(6), 1125–1137 (2005)

    Article  Google Scholar 

  6. B. Das, S. Banerjee, Unified CORDIC-based chip to realise DFT/DHT/DCT/DST. IEE Proc. Comput. Digit. Tech. 149, 121–127 (2002)

    Article  Google Scholar 

  7. J.I. Guo, C.C. Li, A generalized architecture for the one-dimensional discrete cosine and sine transforms. IEEE Trans. Circuits Syst. Video Technol. 11(7), 874–881 (2001)

    Article  Google Scholar 

  8. S.C. Hsia, S.H. Wang, Shift-register-based data transposition for cost-effective discrete cosine transform. IEEE Trans. Very Large Scale Integr. Syst. 15(6), 725–728 (2007)

    Article  MathSciNet  Google Scholar 

  9. S.F. Hsiao, Y.H. Hu, T.B. Juang, C.H. Lee, Efficient VLSI implementations of fast multiplierless approximated DCT using parameterized hardware modules for silicon intellectual property design. IEEE Trans. Circuits Syst. I 52(8), 1568–1579 (2005)

    Article  MathSciNet  Google Scholar 

  10. H. Huang, L.Y. Xiao, CORDIC based fast radix-2 DCT algorithm. IEEE Signal Process. Lett. 20(5), 483–486 (2013)

    Article  MathSciNet  Google Scholar 

  11. H. Huang, T.Y. Sung, Y.S. Shieh, A novel VLSI linear array for 2-D DCT/IDCT, in 2010 3rd International Congress on Image and Signal Processing, vol. 8 (2010), pp. 3686–3690

    Chapter  Google Scholar 

  12. U.T. Koc, K.J.R. Liu, Discrete cosine/sine transform based motion estimation, in Proc. ICIP-94, IEEE Int. Conf. Image Processing, vol. 3 (1994), pp. 771–775

    Chapter  Google Scholar 

  13. S.C. Lai, Y.P. Yeh, W.C. Tseng, S.F. Lei, Low-cost and high-accuracy design of fast recursive MDCT/MDST/IMDCT/IMDST algorithms and their realization. IEEE Trans. Circuits Syst. II 59(1), 65–69 (2012)

    Article  Google Scholar 

  14. S.F. Lei, S.C. Lai, P.Y. Cheng, C.H. Luo, Low complexity and fast computation for recursive MDCT and IMDCT algorithms. IEEE Trans. Circuits Syst. II 57(7), 571–575 (2010)

    Article  Google Scholar 

  15. P.K. Meher, Systolic designs for DCT using a low-complexity concurrent convolutional formulation. IEEE Trans. Circuits Syst. Video Technol. 16(9), 1041–1050 (2006)

    Article  Google Scholar 

  16. P.K. Meher, Unified systolic-like architecture for DCT and DST using distributed arithmetic. IEEE Trans. Circuits Syst. I 53(12), 2656–2663 (2006)

    Article  MathSciNet  Google Scholar 

  17. P.K. Meher, S.Y. Park, CORDIC designs for fixed angle of rotation. IEEE Trans. Very Large Scale Integr. Syst. 21(2), 217–228 (2013)

    Article  Google Scholar 

  18. P.K. Meher, J. Valls, T.B. Juang, K. Sridharan, K. Maharatna, 50 years of CORDIC: algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907 (2009)

    Article  MathSciNet  Google Scholar 

  19. S.B. Pan, R.H. Park, Unified systolic arrays for computation of the DCT/DST/DHT. IEEE Trans. Circuits Syst. Video Technol. 7(2), 413–419 (1997)

    Article  Google Scholar 

  20. M. Puschel, J.M.F. Moura, Algebraic signal processing theory: Cooley-Tukey type algorithms for DCTs and DSTs. IEEE Trans. Signal Process. 56(4), 1502–1521 (2008)

    Article  MathSciNet  Google Scholar 

  21. K. Rose, A. Heiman, I. Dinstein, DCT/DST alternate-transform image coding. IEEE Trans. Commun. 38, 94–101 (1990)

    Article  Google Scholar 

  22. A. Saxena, F.C. Fernandes, Mode dependent DCT/DST for intra prediction in block-based image/video coding, in IEEE ICIP (2011), pp. 1721–1724

    Google Scholar 

  23. X. Shao, S.G. Johnson, Type-II/III DCT/DST algorithms with reduced number of arithmetic operations. Signal Process. 88(6), 1553–1564 (2008)

    Article  MATH  Google Scholar 

  24. X. Shao, S.G. Johnson, Type-IV DCT, DST, and MDCT algorithms with reduced number of arithmetic operations. Signal Process. 88(6), 1313–1326 (2008)

    Article  MATH  Google Scholar 

  25. C.C. Sun, S.J. Ruan, B. Heyne, J. Goetze, Low-power and high quality CORDIC-based Loeffler DCT for signal processing. IET Proc. Circuits Devices Syst. 1(6), 453–461 (2007)

    Article  Google Scholar 

  26. L. Vachhani, K. Sridharan, P.K. Meher, Efficient CORDIC algorithms and architectures for low area and high throughput implementation. IEEE Trans. Circuits Syst. II 56(1), 61–65 (2009)

    Article  Google Scholar 

  27. Z. Wu, J. Sha, Z. Wang, L. Li, M. Gao, An improved scaled DCT architecture. IEEE Trans. Consum. Electron. 55(2), 685–689 (2009)

    Article  Google Scholar 

  28. L.Y. Xiao, H. Huang, A novel CORDIC based unified architecture for DCT and IDCT, in 2012 International Conference on Optoelectronics and Microelectronics (ICOM) (2012), pp. 496–500

    Chapter  Google Scholar 

  29. S. Yu, E.E. Swartzlander, DCT implementation with distributed arithmetic. IEEE Trans. Comput. 50(9), 985–991 (2001)

    Article  MathSciNet  Google Scholar 

  30. S. Yu, E.E. Swartzlander Jr., A scaled DCT architecture with the CORDIC algorithm. IEEE Trans. Signal Process. 50(1), 160–167 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Xiao, L. & Liu, J. CORDIC-Based Unified Architectures for Computation of DCT/IDCT/DST/IDST. Circuits Syst Signal Process 33, 799–814 (2014). https://doi.org/10.1007/s00034-013-9661-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9661-9

Keywords

Navigation