Abstract
This paper investigates the problem of sampled-data synchronization of chaotic Lur’e systems with time-varying sampling. A novel Lyapunov functional, which is continuous in time and makes full use of the available information about the sampling pattern, is constructed to synchronize the chaotic Lur’e systems. By using a free-weighting matrix approach and solving a set of linear matrix inequalities (LMIs), a sampled-data controller is obtained. The effectiveness and the validity of the proposed theoretical result are illustrated by two numerical examples.





Similar content being viewed by others
References
J.G. Barajas-Ramirez, G. Chen, L.S. Shieh, Hybrid chaos synchronization. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(5), 1197–1216 (2003)
J.G. Barajas-Ramirez, G. Chen, L.S. Shieh, Fuzzy chaos synchronization via sampled driving signals. Int. J. Bifurc. Chaos Appl. Sci. Eng. 14(8), 2721–2723 (2004)
M. Boutayeb, M. Darouach, H. Rafaralahy, Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 345–349 (2002)
T.L. Carroll, L.M. Pecora, Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38(4), 453–456 (1991)
A.L. Fradkov, B. Andrievsky, R.J. Evans, Synchronization of passifiable Lurie systems via limited-capacity communication channel. IEEE Trans. Circuits Syst. I, Regul. Pap. 56(2), 430–439 (2009)
E. Fridman, A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)
Q.L. Han, On designing time-varying delay feedback controller for master–slave synchronization of Lur’e systems. IEEE Trans. Circuits Syst. I, Regul. Pap. 54(7), 1573–1583 (2007)
Y. He, Q. Wang, L. Xie, C. Lin, Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control 52(2), 293–299 (2007)
Y. He, G.L. Wen, Q.G. Wang, Delay-dependent synchronization criterion for Lur’e systems with delay feedback control. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16(10), 3087–3091 (2006)
Y. He, M. Wu, J.H. She, G.P. Liu, Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst. Control Lett. 51(1), 57–65 (2004)
Y. He, M. Wu, J.H. She, G.P. Liu, Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans. Autom. Control 49(5), 828–832 (2004)
G. Hu, Z. Feng, R. Meng, Chosen ciphertext attack on chaos communication based on chaotic synchronization. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(2), 257–279 (2003)
Z. Hu, H. Zhu, J. Zhao, Further results on H ∞ filtering for a class of discrete-time singular systems with interval time-varying delay. Circuits Syst. Signal Process. (2013). doi:10.1007/s00034-012-9491-1
J. Huang, Y. Yang, Z. Han, J. Zhang, Robust absolute stability criterion for uncertain Lur’e differential inclusion systems with time delay. Circuits Syst. Signal Process. 31(6), 2001–2017 (2012)
J.H. Kim, C.H. Hyun, E. Kim, Adaptive synchronization of uncertain chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)
A.P. Kurian, S. Puthusserypady, Performance analysis of nonlinear-predictive-filter-based chaotic synchronization. IEEE Trans. Circuits Syst. II, Express Briefs 53(7), 886–890 (2006)
J. Lu, D.J. Hill, Global asymptotical synchronization of chaotic Lur’e systems using sampled data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II, Express Briefs 55(6), 586–590 (2008)
T. Papamarkou, A.J. Lawrance, Paired Bernoulli circular spreading: attaining the BER lower bound in a CSK setting. Circuits Syst. Signal Process. 32(1), 143–166 (2013)
J.A.K. Suykens, T. Yang, L.O. Chua, Impulsive synchronization of chaotic Lur’e systems by measurement feedback. Int. J. Bifurc. Chaos Appl. Sci. Eng. 8(6), 1371–1381 (1998)
Y. Wang, X. Zhang, Y. Hu, Robust H ∞ control for a class of uncertain neutral stochastic systems with mixed delays: a ccl approach. Circuits Syst. Signal Process. 32(2), 631–646 (2013)
Z. Wu, P. Shi, H. Su, J. Chu, Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1368–1376 (2012)
M.E. Yalcin, J.A.K. Suykens, J.P.L. Vandewalle, Master–slave synchronization of Lur’e systems with time-delay. Int. J. Bifurc. Chaos Appl. Sci. Eng. 11(6), 1707–1722 (2001)
M.E. Yalcin, J.A.K. Suykens, J.P.L. Vandewalle, Cellular Neural Networks, Multi-Scroll Chaos and Synchronization (World Scientific, Singapore, 2005)
C. Zhang, Y. He, M. Wu, Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II, Express Briefs 56(4), 320–324 (2009)
X. Zhu, Y. Wang, H. Yang, New globally asymptotical synchronization of chaotic Lur’e systems using sampled data, in Processing of the 28th American Control Conference, (2010), pp. 1817–1822
Acknowledgements
This work is supported by The National Natural Science Foundation of P.R. China (61304072), National Natural Science Foundation of P.R. China (61203025) and National Basic Research Program of China (2013CB035406)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, YQ., Su, H. & Wu, ZG. Asymptotical Synchronization of Chaotic Lur’e Systems Under Time-Varying Sampling. Circuits Syst Signal Process 33, 699–712 (2014). https://doi.org/10.1007/s00034-013-9665-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-013-9665-5