Skip to main content
Log in

A Segmentation-Based Chroma Intra Prediction Coding Scheme for H.264/AVC

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel segmentation-based intra prediction coding scheme for low-bitrate video coding. Different coding schemes are separately designed for the luma and chroma components in our proposed method. The traditional block-based coding scheme is still used for the luma components, and the segmentation-based coding scheme is developed for the chroma components. The segmentation operation is used for the reconstructed luma components, which groups similar pixels together and produces a set of homogenous regions. Here, these local and homogenous regions are referred to superpixels. By utilizing the spatial correlation between the luma and chroma planes, we transfer the segmentation result of the luma components to the chroma components, which will not induce any side information in the chroma intra prediction coding. Instead of using the macroblock (MB) as the coding unit, the proposed method implements the chroma intra prediction in each superpixel, and the original pixels in each superpixel are employed to substitute the neighboring reconstructed samples in the prediction process. The experimental results show that the proposed method can achieve an average 0.20 dB and up to 0.63 dB coding gains in comparison to the directional intra prediction scheme for H.264/AVC low-bitrate video coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. G. Bjontegaard, Calculation of average PSNR differences between RD-curves, in ITU-T VCEG, (2001). VCEG-M33

    Google Scholar 

  3. F. Bossen, Common test conditions and software reference configurations, in JCT-VC Meeting, Torino (2011). JCTVC-F900

    Google Scholar 

  4. J. Chen, V. Seregin, W.J. Han, J. Kim, B. Jeon, CE6.a. 4: chroma intra prediction by reconstructed luma samples, in JCT-VC Meeting, Geneva (2011). JCTVC-E266

    Google Scholar 

  5. I.H. Cho, J.H. Lee, W.H. Lee, D.S. Jeong, New intra luma prediction mode in H.264/AVC using collocated weighted chroma pixel value, in Advanced Concepts for Intelligent Vision Systems, vol. 4179, (2006), pp. 344–353

    Chapter  Google Scholar 

  6. J.A. Choi, Y.S. Ho, Line-by-line intra 16×16 prediction for high-quality video coding, in IEEE International Conference on Multimedia and Expo (2010), pp. 1281–1286

    Google Scholar 

  7. J.A. Choi, Y.S. Ho, Implicit line-based intra 16×16 prediction for H.264/AVC high-quality video coding. Circuits Syst. Signal Process. 31(5), 1829–1845 (2012)

    Article  Google Scholar 

  8. O. Divorra Escoda, P. Yin, C. Dai, X. Li, Geometry-adaptive block partitioning for video coding, in IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1 (2007), pp. 657–660

    Google Scholar 

  9. P.L. Dragotti, M.N. Do, R. Shukla, M. Vetterli, On the compression of two-dimensional piecewise smooth functions, in IEEE International Conference on Image Processing (2001), pp. 14–17

    Google Scholar 

  10. N.C. Francisco, N.M.M. Rodrigues, E.A.B. da Silva, M.B. de Carvalho, S.M.M. de Faria, V.M.M. da Silva, M.J.C.S. Reis, Multiscale recurrent pattern image coding with a flexible partition scheme, in IEEE International Conference on Image Processing (2008), pp. 141–144

    Google Scholar 

  11. B. Fulkerson, A. Vedaldi, S. Soatto, Class segmentation and object localization with superpixel neighborhoods, in IEEE International Conference on Computer Vision (2009), pp. 670–677

    Google Scholar 

  12. HEVC Model 4.1 (2011). https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/branches/HM-4.1-dev/

  13. ITU-T VCEG KTA Reference Software (2011). http://iphome.hhi.de/suehring/tml/download/KTA

  14. A. Kassim, L. Siong, Performance of the color set partitioning in hierarchical tree scheme (CSPIHT) in video coding. Circuits Syst. Signal Process. 20, 253–270 (2001)

    Article  MATH  Google Scholar 

  15. A. Kassim, E. Tan, W. Lee, 3D color set partitioning in hierarchical trees. Circuits Syst. Signal Process. 28, 41–53 (2009)

    Article  Google Scholar 

  16. B. Li, G.J. Sullivan, J. Xu, Common test conditions and software reference configurations, in JCT-VC Meeting, Torino (2011). JCTVC-F900

    Google Scholar 

  17. H. Li, K.N. Ngan, Saliency model based face segmentation in head-and-shoulder video sequences. J. Vis. Commun. Image Represent. 19(5), 320–333 (2008)

    Article  Google Scholar 

  18. H. Li, K.N. Ngan, A co-saliency model of image pairs. IEEE Trans. Image Process. 20(12), 3365–3375 (2011)

    Article  MathSciNet  Google Scholar 

  19. H. Li, K.N. Ngan, Q. Liu, FaceSeg: automatic face segmentation for real-time video. IEEE Trans. Multimed. 11(1), 77–88 (2009)

    Article  Google Scholar 

  20. H. Li, K.N. Ngan, Z. Wei, Fast and efficient method for block edge classification and its application in H.264/AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 18(6), 756–768 (2008)

    Article  Google Scholar 

  21. D. Liu, X. Sun, F. Wu, Y.Q. Zhang, Edge-oriented uniform intra prediction. IEEE Trans. Image Process. 17(10), 1827–1836 (2008)

    Article  MathSciNet  Google Scholar 

  22. M. Mahoney, Data Compression Programs (2007)

  23. F. Meng, H. Li, G. Liu, K.N. Ngan, Object co-segmentation based on shortest path algorithm and saliency model. IEEE Trans. Multimed. 14(5), 1429–1441 (2012)

    Article  Google Scholar 

  24. F. Meng, H. Li, G. Liu, K.N. Ngan, Image cosegmentation by incorporating color reward strategy and active contour model. IEEE Trans. Syst. Man Cybern. 43(2), 725–737 (2013)

    Google Scholar 

  25. A. Moore, S. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in IEEE Conference on Computer Vision and Pattern Recognition (2008), pp. 1–8

    Google Scholar 

  26. J. Ohm, G. Sullivan, H. Schwarz, T.K. Tan, T. Wiegand, Comparison of the coding efficiency of video coding standards—including high efficiency video coding (hevc). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

    Article  Google Scholar 

  27. M. Ouaret, F. Dufaux, T. Ebrahimi, On comparing JPEG2000 and intraframe AVC, in SPIE Applications of Digital Image Processing XXIX, vol. 6312 (2006), p. U3120

    Google Scholar 

  28. Y. Piao, H. Park, Adaptive interpolation-based divide-and-predict intra coding for h.264/avc, in IEEE Trans. Circuits Syst. Video Technol. (2010), pp. 1915–1921

    Google Scholar 

  29. X. Ren, J. Malik, Learning a classification model for segmentation, in IEEE International Conference on Computer Vision (2003), pp. 10–17

    Chapter  Google Scholar 

  30. I.E. Richardson, The H.264 Advanced Video Compression Standard, 2nd edn. (Wiley, New York, 2010)

    Book  Google Scholar 

  31. T.K. Tan, C.S. Boon, Y. Suzuki, Intra prediction by template matching, in IEEE International Conference on Image Processing (2006), pp. 1693–1696

    Google Scholar 

  32. T.K. Tan, G. Sullivan, T. Wedi, Recommended simulation common conditions for coding efficiency experiments rev. 1, in ITU-T Q.6/SG16, Marrakech, Morocco (2007). VCEG-AE010

    Google Scholar 

  33. ITU-T Recommendation H.264 and ISO/IEC 14496-10 (MPEG-4) AVC, Advanced Video Coding for Generic Audiovisual Services (2005)

  34. P. Topiwala, T. Tran, W. Dai, Performance comparison of jpeg2000 and h. 264/avc high profile intra-frame coding on hd video sequences, in SPIE Applications of Digital Image Processing XXIX, vol. 6312 (2006), p. T3120

    Google Scholar 

  35. Z. Wei, K.N. Ngan, H. Li, An efficient intra mode selection algorithm for H.264 based on edge classification and rate-distortion estimation. Signal Process. Image Commun. 23(9), 699–710 (2008)

    Article  Google Scholar 

  36. T. Wiegand, B. Girod, Lagrange multiplier selection in hybrid video coder control, in IEEE International Conference on Image Processing, vol. 3 (2001), pp. 542–545

    Google Scholar 

  37. T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)

    Article  Google Scholar 

  38. Q. Wu, H. Li, Mode dependent down-sampling and interpolation scheme for high efficiency video coding. Signal Process. Image Commun. 28(6), 581–596 (2013)

    Article  Google Scholar 

  39. Y. Ye, M. Karczewicz, Improved H.264 intra coding based on bi-directional intra prediction, directional transform, and adaptive coefficient scanning, in IEEE International Conference on Image Processing (2008), pp. 2116–2119

    Google Scholar 

  40. C. Yeo, Y.H. Tan, Z. Li, S. Rahardja, Chroma intra prediction using template matching with reconstructed luma components, in IEEE International Conference on Image Processing (2011), pp. 1637–1640

    Google Scholar 

  41. L. Zhang, S. Ma, W. Gao, Position dependent linear intra prediction for image coding, in IEEE International Conference on Image Processing (2010), pp. 2877–2880

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSFC (Nos. 61179060 and 61101091), National High Technology Research and Development Program of China (863 Program, No. 2012AA011503), and Fundamental Research Funds for the Central Universities (ZYGX2012YB007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Xiong, J., Luo, B. et al. A Segmentation-Based Chroma Intra Prediction Coding Scheme for H.264/AVC. Circuits Syst Signal Process 33, 939–957 (2014). https://doi.org/10.1007/s00034-013-9675-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9675-3

Keywords

Navigation