Skip to main content
Log in

Image Denoising Via Sparse Dictionaries Constructed by Subspace Learning

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a combinational algorithm for the removal of zero-mean white and homogeneous Gaussian additive noise from a given image. Image denoising is formulated as an optimization problem. This is iteratively solved by a weighted basis pursuit (BP) in the closed affine subspace. The patches extracted from a given noisy image can be sparsely and approximately represented by adaptively choosing a few nearest neighbors. The approximate reconstruction of these denoised patches is performed by the sparse representation on two dictionaries, which are built by a discrete cosine transform and the noisy patches, respectively. Experiments show that the proposed algorithm outperforms both BP denoising and Sparse K-SVD. This is because the underlying structure of natural images is better captured and preserved. The results are comparable to those of the block-matching 3D filtering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Aharon, M. Elad, A. Bruckstein, K-SVD and its non-negative variant for dictionary design, in Proceedings of the SPIE Conference Wavelets (2005), pp. 327–339

  2. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  3. M. Bahoura, H. Ezzaidi, FPGA-implementation of discrete wavelet transform with application to signal denoising. Circuits Syst. Signal Process. 31(3), 987–1015 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Bryt, M. Elad, Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image Represent. 19(4), 270–282 (2008)

    Article  Google Scholar 

  5. A. Buades, B. Coll, J.M. Morel, A review of image denoising methods, with a new one. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Cao, Z. Lin, The detection bound of the probability of error in compressed sensing using Bayesian approach, in Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS) (2012), pp. 2577–2580

  7. P. Chatterjee, P. Milanfar, Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18(7), 1438–1451 (2009)

    Article  MathSciNet  Google Scholar 

  8. S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising with block-matching and 3 D filtering, in Proceedings of SPIE (2006), pp. 354–365

  10. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  11. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  12. T. Faktor, Y.C. Eldar, M. Elad, Denoising of image patches via sparse representations with learned statistical dependencies, in Proceedings of the International Conference on Acoustics Speech and Signal Processing (2011), pp. 5820–5823

  13. M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21, http://cvxr.com/cvx. Accessed 26 Oct 2010

  14. L. Jacques, D.K. Hammond, M.J. Fadili, Dequantizing compressed sensing: when oversampling and non-gaussian constraints combine. IEEE Trans. Inf. Theory 57(1), 559–571 (2011)

    Article  MathSciNet  Google Scholar 

  15. C. Kervrann, J. Boulanger, Optimal spatial adaptation for patchbased image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006)

    Article  Google Scholar 

  16. A.B. Lee, K.S. Pedersen, D. Mumford, The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)

    Article  MATH  Google Scholar 

  17. C. Liu, Y.V. Zakharov, T. Chen, Broadband underwater localization of multiple sources using basis pursuit de-noising. IEEE Trans. Image Process. 60(4), 1708–1717 (2012)

    Article  MathSciNet  Google Scholar 

  18. G. Luo, Wavelet notch filter design of spread-spectrum communication systems for high-precision wireless positioning. Circuits Syst. Signal Process. 31(2), 651–668 (2012)

    Article  Google Scholar 

  19. J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Non-local sparse models for image restoration, in Proceedings of the IEEE International Conference on Computer Vision (2009), pp. 2272–2279

  20. J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  21. J. Mairal, G. Sapiro, M. Elad, Multiscale sparse image representation with learned dictionaries, in Proceedings of the IEEE International Conference on Image Processing (2007), pp. III-105–III-108

  22. J. Mairal, G. Sapiro, M. Elad, Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. S.G. Mallat, Z. Zhang, Matching pursuits with time–frequency dictionaries. IEEE Trans. Image Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  24. A. Müller, D. Sejdinovic, R. Piechocki, Approximate message passing under finite alphabet constraints, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2012), pp. 3177–3180

  25. B.A. Olshausen, D.J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  26. Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in Proceedings of the 27th Anual Asilomar Conference on Signals, Systems and Computers (1993), pp. 40–44

  27. T. Peleg, Y.C. Eldar, M. Elad, Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans. Image Process. 60(5), 2286–2303 (2012)

    Article  MathSciNet  Google Scholar 

  28. G. Pope, C. Studer, M. Baes, Coherence-based recovery guarantees for generalized basis-pursuit de-quantizing, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2012), pp. 3669–3672

  29. J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using a scale mixture of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Protter, M. Elad, Image sequence denoising via sparse and redundant representations. IEEE Trans. Image Process. 18(1), 27–35 (2009)

    Article  MathSciNet  Google Scholar 

  31. Z.M. Ramadan, Efficient restoration method for images corrupted with impulse noise. Circuits Syst. Signal Process. 31(4), 1397–1406 (2012)

    Article  MathSciNet  Google Scholar 

  32. D.H. Rao, P.P. Panduranga, A survey on image enhancement techniques: classical spatial filter, neural network, cellular neural network, and fuzzy filter, in Proceedings of the IEEE International Conference on Information Technology (2006), pp. 2821–2826

  33. R. Rubinstein, M. Zibulevsky, M. Elad, Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Image Process. 58(3), 1553–1564 (2010)

    Article  MathSciNet  Google Scholar 

  34. H.S. Seung, D.D. Lee, The manifold ways of perception. Science 290(5500), 2268–2269 (2000)

    Article  Google Scholar 

  35. J.N. Tehrani, A. McEwan, C. Jin, A.V. Schaik, L1 regularization method in electrical impedance tomography by using the l1-curve (Pareto frontier curve). Appl. Math. Model. 36(3), 1095–1105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Y. Yang, Y. Wei, Neighboring coefficients preservation for signal denoising. Circuits Syst. Signal Process. 31(2), 827–832 (2012)

    Article  MathSciNet  Google Scholar 

  37. G. Yu, G. Sapiro, S. Mallat, Image modeling and enhancement via structured sparse model selection, in 2010 Proceedings of the 17th IEEE International Conference on Image Processing (2009), pp. 1641–1644

  38. A. Zahedi, M.H. Kahaei, Spectrum estimation by sparse representation of autocorrelation function. IEICE Trans Fundam Electron Commun Comput Sci E 95A(7), 1185–1186 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program) under Grant No. 2011CB302201, National Nature Science Foundation of China under Grants Nos. 61322203 and 61332002, and Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20120181130007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, Y., Zhang, L. & Yi, Z. Image Denoising Via Sparse Dictionaries Constructed by Subspace Learning. Circuits Syst Signal Process 33, 2151–2171 (2014). https://doi.org/10.1007/s00034-013-9734-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9734-9

Keywords

Navigation